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1. Executive summary 
 

Implementing a carbon land tax faces key measurement and administrative challenges. 
Accurate quantification of emissions from peat, requires reliable methods that reflect 
real fluxes while managing uncertainty transparently. Spatial and temporal resolution 
must be sufficient to attribute emissions fairly to individual landholdings and capture 
changes arising from management and climate. The system must incentivize emission-
reducing practices equitably across diverse land tenures, ensuring accessibility for 
smaller or resource-limited landowners. Transparency, clear compliance procedures, 
and robust dispute resolution are essential to maintain credibility, fairness, and public 
trust.  

Current national emission-factor approaches used in the UK Greenhouse Gas (GHG) 
Inventory do not provide sufficient precision and spatial accuracy for taxation at the 
level of individual holdings. This report therefore evaluates whether a peat-based 
carbon tax could be made scientifically robust and administratively credible, balancing 
environmental ambition with fairness and feasibility based on current methods and 
research evidence. Differences in peat condition, management and access can 
produce unequal emission outcomes, and if measurement systems fail to reflect this 
variation they risk appearing arbitrary. Complex or opaque monitoring requirements 
could impose excessive costs and erode legitimacy, especially for smaller or less 
technically equipped landholders.  

Alternative configurations of existing measurement methods highlight clear trade-offs 
between accuracy, cost, spatial resolution and administrative burden in a land 
emissions carbon tax. Although potentially most cost-effective to run (total annual 
operating cost £42,000 for a 250,000 ha), model development costs for purely remote-
sensing approaches would be costly (as much as £3M). Moreover, these methods are 
not yet reliable enough because water-table depth, a key control on CO₂ and CH₄ 
emissions, cannot be inferred remotely with sufficient confidence at parcel scale, 
creating a risk of misestimated liabilities. Introducing ground-based water-table 
measurements (dipwells) materially improves accuracy and responsiveness to 
management and restoration, but installation, maintenance and quality control become 
costly (estimated upfront costs of £11.3m and annual operating costs of £513k for 250K 
ha). However, costs are sensitive to dipwell density, servicing frequency and sensor 
costs. New sensor-development work by CEH could materially reduce capital costs 
without weakening the evidential standard, by lowering per-unit sensor costs while 
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retaining the higher-specification performance needed for audit and appeals; under the 
report’s assumptions, reducing unit cost from £518 to £100 would lower installation 
costs by around £4.2m for a 250,000 ha rollout, all else equal. Additional measures (for 
example, soil testing for N₂O or hyperspectral data for photosynthetic uptake) provide 
marginal gains in terms of completeness, with associated additional costs and 
complexity. A further source of uncertainty is the national peat extent and condition 
baseline, which contains omission and commission errors at the scale of individual 
holdings. 

The report concludes that current methods do not yet provide the accuracy, fairness or 
transparency required for a nationally applied, emissions-based peatland land tax 
without significant cost, and that any move towards implementation should therefore 
be accompanied by further evidence-gathering and testing. In light of these risks and 
uncertainties, three steps are proposed (Table 1), starting with additional research and 
progressing through phased pilot approaches targeting the highest-emitting peat types, 
followed by the piloting of water-table based measures, exploring approaches to reduce 
costs and improve the scalability of these types of measurement, alongside piloting of 
administrative procedures. We conclude that (Table 1): 

• The lowest immediate-risk approach is to prioritise the commissioning of 
targeted research and improving national screening layers before any live 
liabilities are applied, given the current constraints on accuracy and the 
potential for dispute.  

• Limited piloting could still be proportionate if designed to manage risk and cost 
through sequencing, beginning with a narrow pilot focused on bare, actively 
eroding peat where verification is comparatively straightforward and lower-cost.  

• After evaluation of the research and initial pilot findings, piloting could progress 
to a WTD-based approach for drained or modified peat, recognising that this 
phase carries materially higher operational complexity, dispute exposure and 
monitoring costs (driven largely by dipwell/logging requirements).  

This sequencing would limit initial cost and risk, target the highest emitting and most 
visible class first, and allow the WTD-based system to be piloted and refined before 
wider application. In parallel, integration with wider carbon-pricing instruments such as 
the UK Emissions Trading Scheme could be explored as an alternative route to a land 
emissions carbon tax. Actioning the steps outlined in this report needs to balance 
messaging to the land management community (given evidence that proposals to 
introduce a similar tax in Denmark are already influencing decisions to sell peatlands to 
avoid future liabilities) with the risks of piloting a tax using methods that are known to 
have significant limitations, potentially undermining the legitimacy of a future tax.  



 

Table 1: Proposed three-step sequencing for assessing and piloting a peatland emissions carbon tax 

Step Description Pros Cons Risk profile Cost implications 

1: Further 
research 

A programme of research to close key technical 
evidence gaps, including:  
• Calibrating water-table–flux response 

functions for Scotland’s main peat types 
using long-term chamber and eddy-
covariance data;  

• Determining parcel-scale minimums for 
dipwell/piezometer spacing, logger 
frequency and QA procedures relative to 
site features such as slope breaks and 
drainage features;  

• Building national screening layers of peat 
extent and condition with pixel-level 
uncertainty suitable for setting default 
liabilities; and  

• Investigating options for improving remote 
inference of water-table depth, for 
example, by integrating ground-
penetrating radar (GPR), InSAR and SAR, 
LiDAR and optical indices, supported by 
targeted ground-truthing using low-cost in 
situ measurements (including redox 
potential (eH)) to provide contextual 
information on oxygen availability and 
persistent saturation, and, where 
appropriate, citizen-science approaches 
to increase spatial coverage.  

Directly targets key 
feasibility constraints 
(accuracy, fairness, 
transparency at holding 
scale) before liabilities 
are set; strengthens the 
technical basis for any 
later rollout by improving 
calibration, mapping 
baselines and uncertainty 
handling. 

Delays any behavioural 
signal from taxation while 
evidence gaps are 
closed; does not test 
operational issues 
(verification, audit, 
appeals) under live 
conditions. 

Lowest immediate 
implementation risk (no 
live liabilities based on 
weak methods), but 
continued exposure to 
risks identified in the 
report if later steps 
proceed without 
resolving identified 
uncertainties. 

Research and data-
development costs 
could be  
commissioned or 
integrated into 
Scottish 
Government’s next 
Strategic Research 
Programme and 
reduce later 
compliance and 
dispute costs by 
improving baselines 
and response 
functions. 

2: Initial 
pilot 

An initialpilot could apply only to bare and 
actively eroding peat, by publishing an eroding-
peat layer with pixel-level uncertainty to set 
default liabilities, using low-cost visual 
verification to confirm status and change. 

Targets the highest 
emitting and most visible 
class first, with 
comparatively 
straightforward evidence 

Covers only a subset of 
peat emissions; does not 
address emissions from 
drained/modified peat 
until later; selective 

Key risks are 
misclassification and 
contestation at holding 
scale due to map 
omission/commission 

Lower monitoring 
costs than WTD-
based approaches 
(desk-based 
screening and 
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Step Description Pros Cons Risk profile Cost implications 

Challenges would rely on, for example, recent 
orthophotos or UAV imagery, repeat UAV/LiDAR 
surface models showing reduced roughness 
and infilled haggs/gullies, and dated, 
georeferenced records of stabilisation works. A 
focus on surface roughness and erosion is 
supported by sub-surface structural evidence 
showing bare peat is associated with 
hydrophobic surface layers and loss of fine-
scale pore structure and microtopography 
(Brennand, 2025), conditions likely linked to 
enhanced runoff, drainage efficiency, and 
elevated carbon loss. 

and change detection; 
avoids upfront 
dependence on WTD 
measurement networks, 
while allowing 
verification/audit/appeals 
processes to be tested in 
a bounded scope. 

scope raises equity and 
fairness questions within 
wider taxation principles. 

errors and boundary 
effects. 

imagery-based 
verification), but still 
requires versioned 
screening layers with 
uncertainty and a 
functioning 
challenge route; 
dispute-handling 
costs are difficult to 
predict depending on 
mapping accuracy. 

3: Expand 
pilot to 
drained or 
modified 
peat 

Subject to evaluation of accuracy (discussed in 
this report) and dispute rates and administrative 
cost (a subject of future research), the pilot 
could expand to drained or modified peat using 
water table depth (WTD) measurements for 
verification. Defaults could be set from national 
screening layers and adjusted using rolling 
multi-year WTD evidence collected to a 
published minimum standard; uncertainty could 
be treated explicitly through confidence 
thresholds for desk screening, targeted review 
or field checks, published intervals for parcel 
estimates, and predefined discounts where 
uncertainty is material, alongside clear appeal 
routes. 

More responsive to 
management and 
restoration than class-
based approaches 
because WTD is 
identified as the most 
informative driver; 
supports a structured 
uncertainty framework 
(thresholds, intervals, 
predefined discounts) 
that can improve 
transparency and 
adjudication. 

High complexity and 
technical burden relative 
to most taxes; depends 
on reliable WTD 
measurement at 
sufficient spatial 
resolution and on robust 
baselines; remote WTD 
remains the limiting 
factor and dipwells are 
currently the only viable 
high-accuracy route. 

Elevated risk of dispute 
and administrative load if 
uncertainty is high, 
evidence routes are 
unclear, or compliance 
capacity varies across 
land tenures; the report 
flags risks of 
misestimated liabilities 
and significant 
transaction costs when 
assessments are 
contested. 

Highest cost profile: 
installation, 
maintenance and QA 
of dipwells/loggers 
are identified as the 
dominant cost driver 
in higher-accuracy 
measurement 
scenarios; costs may 
fall if lower-cost 
sensors mature, but 
this remains 
developmental. 
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1 Introduction 
Reducing greenhouse gas (GHG) emissions from peatlands represents one of the most 
direct routes to meeting national climate targets (Kopansky et al., 2022). Degraded peat 
is estimated to emit more than six million tonnes of carbon dioxide equivalent each 
year; roughly fifteen per cent of Scotland’s total GHG emissions (Brown et al., 2024). 
Current annual rates of re-wetting degraded peatland are insufficient to achieve area 
targets by 2030 (NatureScot, 2025). This challenge is particularly acute in on severely 
degraded or bare peat surfaces, which will not recover passively, and contributes 
disproportionately to peatland GHG emissions. Peatland re-wetting1 would need to 
proceed at roughly three times the current rate to meet the 250,000-hectare target by 
2030 (Climate Change Committee, 2022). A carbon land tax could complement 
restoration grants from Peatland ACTION and incentives to restore via carbon markets 
through the Peatland Code, encouraging landowners and land managers to restore 
damaged peatlands whilst creating a sustained economic signal to maintain peat in 
good condition without further damage (e.g., from drainage or inappropriate burning). If 
carefully designed, theoretically, such a tax could internalise many of the environmental 
costs of degraded peatlands that are currently borne by society, whilst generating 
revenue to support further public funding for restoration (Kotchen, 2022). 

However, any new land-based tax must balance environmental ambition with fairness, 
administrative efficiency and technical credibility (Heine et al., 2012).  Land managers 
would be expected to pay liabilities proportional to the emissions associated with their 
peat holdings, but heterogeneity in land quality, vegetation, management, tenure and 
accessibility means that identical actions may yield widely different emission 
outcomes. If measurement or modelling methods cannot resolve these differences, the 
tax could be perceived as arbitrary, undermining its legitimacy. Justice frameworks 
suggest that fairness is not just about distribution of burden, but about recognition of 
difference, procedure, transparency, and the capacity to contest (Ghafouri, 2023). As 
such, depending on the accessibility of the landholding and the capacity of landowners 
to use measurement methodologies, those with less capacity may be unfairly 
disadvantaged. Highly technical monitoring requirements have the potential to increase 
transaction costs, while the use of “black-box” models may simplify measurement 
needs but reduce trust, leading to increased contestation of liabilities. These concerns 
make it essential that any measurement method is transparent, accounts explicitly for 

 
1 Restoration and rewetting are used interchangeably in this report. In doing so, we do not imply 
that it is likely that peatlands will be restored to their historic undisturbed state, but emphasise 
the aim of restoring the functioning of the area as a wetland. This is done through raising water 
tables, i.e.  rewetting. 



 9 

measurement error, and allows for audit or appeal, and calibrates liability to avoid 
excessive penalisation of variance that cannot be controlled. The Scottish 
Government’s tax framework offers guiding principles for assessing these challenges. 
Proportionality requires that the burden reflects both ability to pay and the scale of 
emissions (Scottish Government, 2021). For efficiency, the system should deliver 
environmental outcomes without imposing excessive compliance or enforcement costs 
and should also account for the carbon costs of restoration interventions, to ensure 
liability reductions reflect net GHG benefit (Brennand et al., 2025). Certainty and 
convenience principles require clear rules for liability and simple processes for both 
taxpayers and tax administrators.  

Reducing LULUCF emissions through a tax on directly or indirectly measured peat GHG 
fluxes will require sufficient temporal resolution so that tax rates can be updated 
regularly (for example, every one to five years) to encourage restoration management. 
This implies resolving fundamental measurement and administrative challenges so 
emissions can be quantified accurately, attributed fairly at holding level, and managed 
efficiently. Current inventory and Peatland Code approaches are scientifically credible 
for national reporting and restoration verification, but rely on fixed emission factors for 
broad condition classes and cannot distinguish liabilities at the level of individual 
holdings, so a tax would need to move beyond these methods. Proxy-based systems 
linking emissions to measurable drivers, especially water-table depth, offer a practical 
route but require calibration against direct flux data, transparent error reporting, and 
spatially balanced sampling to connect fine-scale process understanding to landscape-
scale assessment. Functional indicators of peat condition (including surface and sub-
surface proxies) can help interpret hydrological change, but do not remove the need for 
validation at the GHG flux level. For credibility and fairness, the evidence route must 
also be accessible across diverse owners and tenures, support independent verification 
and appeal, and avoid penalising those with limited technical capacity. This 
requirement means that any tax scheme tied to measured emissions must diverge from 
the principle of GHG reporting following Intergovernmental Panel on Climate Change 
(IPCC) methods, where yearly reported emissions should be independent of short-term 
yearly changes in weather. To achieve the temporal responsiveness required for 
taxation, emission estimates will inevitably capture inter-annual weather effects, 
meaning that if a tax is tied directly to net emissions, liabilities could fluctuate annually 
with weather conditions. Mechanisms would therefore need to be incorporated into the 
tax design to smooth volatility, such as setting a fixed total annual tax yield, with each 
landowner’s contribution proportional to their relative emissions, so that no one pays 
excessively in dry years or disproportionately little in wet years. 

For clarity, this report distinguishes between three general approaches to quantifying 
GHG emissions from peat. These are not mutually exclusive but differ in their purpose 
and resolution: 



 10 

• National inventory, emissions factor, or discrete approach: defines discrete 
condition classes and assigns each a specific emissions factor derived from 
available scientific evidence. Each parcel of peat is allocated to a class based on 
land-use, peat depth, and satellite data. The UK tier 2 example will be given. 

• Direct measurements: physical measurements of GHG concentrations and 
fluxes, typically using chamber or eddy-covariance techniques. 

• Indirect or proxy measurements: estimation of emissions using variables 
statistically or physically strongly associated with GHG fluxes, including 
hydrological, chemical, and indicators of functional condition (e.g., water-table 
depth, eH, pH, and surface vegetation structure). 

In practice, these approaches are interdependent. Both the national inventory and proxy 
methods rely on direct measurements to establish emissions factors and model 
relationships, while the inventory approach itself can be viewed as a composite of 
indirect methods. 

Set against the measurement and administrative challenges outlined above, this report 
has four aims:  

• to provide a desk-based review of existing research on methods for measuring 
peat-related greenhouse gas emissions;  

• to summarise the key strengths and limitations of each method;  
• to assess feasibility and applicability for use in a Scottish tax context where 

liabilities must be attributable to individual landholdings and contestable on an 
evidential basis; and  

• to identify priority further research needs to support Scottish Government policy 
development.  

The remainder of the report is structured as follows. Section 3 sets out the evidence 
synthesis methodology, followed by Section 4 summarising the evidence base in a form 
intended to support policy use. Section 5 then draws together the implications to 
describe pathways towards a future carbon emissions land tax, including where the 
current evidence base is sufficient for limited piloting and where it is not. Supporting 
detail is provided in the appendices: Appendix 1 elaborates design options for a land 
emissions carbon tax based on current methods and evidence; Appendix 2 summarises 
implementation challenges (including issues with existing inventory and Peatland Code 
approaches and comparators); Appendix 3 documents the review methodology in full; 
and Appendix 4 provides the detailed review findings, including comparison of 
measurement strategies and costing assumptions. 
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2 Evidence Synthesis Methodology 
The evidence synthesis identified and evaluated methods for measuring GHG 
emissions from peatlands that could underpin a fair and technically credible carbon 
land tax. The synthesis was divided into two distinct stages. 

The first and major stage of the project was a targeted literature review designed to 
collect evidence demonstrating whether measurements of proxy variables (remote or 
ground-based) provided robust and quantifiable relationships to direct emission 
measurements. Only studies that included a clear comparison between proxy-based 
estimates and direct flux measurements of GHGs were considered valid evidence. This 
strict condition on literature inclusion produced highly relevant studies but certainly 
excluded relevant evidence on measurements of peat erosion, where emissions occur 
off site are not measured and typically assumed to have a fixed emissions factor. 

The second stage evaluated the proxy measurements of emissions in the context of a 
carbon land tax. The context, as set out by the call document, was interpreted in terms 
of quantifiable features of the measurement methods, which were expected to:   

1. Have high enough temporal frequency (<5yrs) so that it can detect changes in 
management practices and restoration activities to adjust carbon tax rates 
regularly; 

2. Have sufficient spatial resolution so that emissions from an area of peat can be 
allocated to a landowner; 

3. Have the prospect of being low cost, both economically and in terms of 
intervention-related carbon costs; 

4. Land-owners can significantly affect the proxy variable/measurement via land 
management changes and interventions so tax can encourage/discourage 
good/bad practices; and 

5. Transparency in approach for ease of tax-dispute resolution and credibility. 

The synthesis focused on studies conducted in peatland environments (defined Table 
2), examining how various measurement approaches, such as remote sensing proxies 
(e.g. InSAR-derived surface height changes) and other geo-biophysical indicators (e.g. 
water table depth, supported by eH), related to direct measurements of peat emissions 
obtained through methods such as chamber or eddy covariance (EC) techniques. 
Chamber methods trap gas in small chambers and are representative of the small 
measured-areas while EC measurement use windspeed and gas concentrations to 
determine the transfer of gases to and from the atmosphere over larger spatial scales. 
Literature from other countries and climates was also included to capture the most up-
to-date methodologies. The targeted review concentrated on studies that used 
statistical measures such as R-squared values and root mean square error to quantify 
the performance of proxy measurements compared to direct measurements.  
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The assessment identified and summarised direct measurement techniques for peat 
emissions, outlining their strengths and limitations in the context of a potential peat 
emissions tax. It then provided background on the proxy variables and measurements, 
along with the search terms used in the targeted review. This was followed by the main 
findings of the targeted review, which were discussed to derive recommendations for 
the Scottish Government.  

 

3 Summary of Evidence Synthesis findings 
This review focused on methods for measuring CO2 and CH4 fluxes as the major 
contributors to peat GHG emissions, while noting that nitrous oxide flux in nitrogen rich 
environments (grass/crops/livestock on peat), and the downstream carbon loss in 
actively eroding conditions, can be significant contributors in some circumstances. 
Direct measurements of GHG emissions via EC or peat chambers were deemed too 
costly at relevant spatial resolution to be viable. Direct measurements via peat 
chambers are labour intensive while EC is expensive and sampling of emissions would 
require careful coordination with ownership boundaries and both require expert 
knowledge to interpret the results. Therefore, the review focused on indirect 
measurements of proxy variables or “drivers” of emissions, including water-table depth, 
supported by chemical indicators of saturation and oxygen availability (e.g. eH and pH) 
and surface ecological indicators of hydrological function (Brennand, 2025), which 
could then be used to predict yearly emissions. 

The targeted literature review (methodology detailed in Appendix 3 and results in 
Appendix 4) found that specific components of the GHG balance of peatlands are best 
approximated by using different measurement methods. Since separate components 
dominate the GHG balance of peat in different conditions, no singular measurement 
method can be accurate across all of Scotland. However, there are common control 
variables across components, and combinations of measurements and modelling can 
be used to target several GHG components together. Water-table depth (WTD), soil 
temperature and measurements of “greenness” (i.e. proxies of photosynthetic activity) 
were found to be important variables for predicting peat GHG emissions. How each of 
these drivers can be measured and the qualitative accuracy of the measurement 
method can be seen in Table 1. 

A full summary of the results of the evidence synthesis are in Appendix 4, detailing: 
primary drivers/proxies of each component in the full peat GHG; how the drivers can be 
measured by either remote or ground-based measurements and gives an assessment of 
how well they measure the proxy in the context of yearly peat emissions; and how suites 
of measurement methods which target the full peat GHG balance and meet the criteria 
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of sufficient spatial and temporal resolution are likely to perform in terms of accuracy, 
cost and scalability. Key findings and implications from the evidence synthesis include: 

• Direct flux measurement methods (eddy covariance and chambers) were judged 
not viable for taxation at holding scale because they are too costly and labour 
intensive, require specialist interpretation, and are difficult to align with 
ownership boundaries.  

• No single measurement method is accurate across all Scottish peat conditions; 
different components dominate in different settings, but water-table depth, soil 
temperature and “greenness” are common control variables that can be 
combined to improve prediction. 

• GHG emissions from actively eroding peat can be significant, but erosion-related 
emissions are rarely directly measurable and would require proxy monitoring and 
conservative assumptions in any tax design. 

• Spectral Earth Observation is the most established and cost-effective approach 
for tracking vegetation and surface processes, and can help estimate 
photosynthetic activity. It is not a reliable predictor of CH₄ or heterotrophic 

respiration (Rₕ) across the range of Scottish peatlands, however interpretation is 
strengthened where the most up-to-date, high-quality spatial and temporal 
datasets are used. 

• Further research is required on the combined and individual use of SAR and 
InSAR for peatland applications, including rigorous, transparent testing and 
validation of existing (sometimes proprietary) algorithms that infer WTD and 
related variables, and joint assessment of how SAR/InSAR outputs relate to 
ground-measured WTD, NEE and CH₄. Although elevation change and InSAR-
derived surface motion (including “bog breathing”) could in principle indicate 
peat loss and emissions, no quantitative studies were found that directly 
compare topographic measurements (InSAR, LiDAR, photogrammetry) with 
measured peatland GHG emissions or annual emissions estimates; in the 
literature, topographic variables are mainly used to interpret spatial differences 
in flux measurements or for eddy-covariance quality control rather than to 
estimate emissions, while greater surface microtopographic complexity 
(hummock–hollow development) is associated with improved hydrological and 
biogeochemical function supporting water retention and carbon accumulation. 

• The development of reliable remote methods for measuring WTD at scale 
provides the greatest potential for cost-effective estimation of site-level GHG 
emissions, but WTD remains difficult to measure remotely at parcel scale and, 
on current evidence, a dipwell network is the only approach capable of delivering 
sufficient accuracy for an emissions-tax basis (with potential for future cost 
reductions via emerging low-cost WTD sensor development).  

 



 

 
 
Table 1: Drivers of peat emissions and how they can be measured. Drivers (columns) are Soil Temperature (Temp); Water Table Depth (WTD); soil 
nutrient status, particularly nitrogen Nutrients/pH); Ebullition refers to the sudden release of gas from peat. N2O was not examined in this review and 
drivers are inferred from understanding of the mineral-soil nitrogen cycle. Scores between, Low, Medium, High and Very High are qualitative and 
represent the accuracy at which the method can approximate the driver in the context of GHG emissions.  Measurement methods with a * are 
ground-based measurements, otherwise they are remotely sensed. 

 

Measurement 
method/Proxy 

Description of method Light & Leaf Area Temp WTD Nutrients/pH Ebullition 

Vegetation Indices 
(Vis) 

Satellite derived measurement of 
‘greenness’ from surface reflectance. 
Indicates vegetation coverage. 

High -  - - 

Solar Induced 
Fluorescence (SIF) 

Plants emit radiation during 
photosynthesis, the strength of this 
signal indicates the degree of 
photosynthetic activity.  

Very High   - - 

Quantum Sensor* Quantum-level light detection to 
precisely measure photosynthetically 
active radiation (PAR) 

Very High - - - - 

Inforeometric 
Synthetic Apperature 
Radiation (InSAR) 

Comparison of radar data through time 
to measure movement 

  Low  Low 

Land Surface 
Temperature (LST) 

Satellite derived estimate of land 
temperature from surface reflectance 

- High - - - 

Meteorological data Temperature data, interpolated from 
readings taken at weather stations 

- High - - - 
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Temperature probes* In situ measurement of temperature 
taken by sensor 

- Very High - - - 

Dip wells* In situ measurement of water table 
using monitoring well  

- - Very High 
 

- - 

Land Surface Water 
Index (LSWI)/ 
Modified 
Water Index (MWI) 

Satellite derived measure of soil 
moisture conditions from surface 
reflectance 

- - Medium - - 

Soil tests Sampling and lab analysis  - - - High - 

Fertilisation data Survey data on quantities of fertiliser 
applied to fields. 

- - - Very High - 



 

• Proxy-based approaches are strengthened when WTD evidence is interpreted 
alongside indicators of persistent saturation and oxygen availability (eH and pH) 
and surface ecological indicators of hydrological function, including as lower-
cost contextual checks on hydrological conditions, subject to appropriate quality 
control.  

• Any emissions approach using calibrated proxy-driver models would need field 
calibration and validation (with performance reported using standard metrics) 
plus explicit, published rules for quantifying and managing uncertainty, including 
confidence thresholds for screening/review, parcel-level intervals, and 
predefined uncertainty discounts where evidence remains material, to support 
audit and dispute resolution. 

 

4 Pathways to a future carbon emissions land tax 
The brief for this project recognised that calculating emissions from peatlands is 
difficult and requires specialised measurement techniques. Approaches to emission 
measurement which are applied elsewhere within the nascent carbon market, UK GHG 
inventory and the Peatland code, are based on emission factors connected to a range of 
condition categories. However, they are designed to operate across the UK, and 
uncertainty is high at site level, so these approaches do not produce a sufficiently 
robust dataset to enable an emissions-based tax system which could: 

• Determine liability at individual taxpayer level; 
• Be sufficiently responsive to emission changes to enable reliefs which would 

encourage land management practices to achieve emission reductions; and 
• Be sufficiently robust and transparent to enable appeal and adjudication of tax 

disputes. 
 

Our research has shown that no single measurement can adequately meet the above 
challenges. Direct measurement techniques would provide the necessary level of 
accuracy and resolution to inform the design and implementation of an emissions-
based tax instrument. However, they are not scalable for routine assessment across 
holdings, given the expertise and costs involved in doing so. Proxy variables (measured 
by a combination of ground sensors and remote platforms) may provide repeatable, 
auditable signals at costs compatible with tax administration.  
 
 
 
 



 

Table 2 2: Comparison matrix of measurement strategies for estimating peatland greenhouse gas (GHG) emissions. Each scenario outlines a suite of methods used to measure light 
and leaf-area characteristics, surface temperature, and water-table depth (WTD), with optional soil sampling for nutrient and pH data. Costs are presented for two monitoring extents 
(ScotGov Target: 250,000 ha and all degraded peat: 1,952,000 ha) and include annual operational and initial capital expenditures. Scenarios progress from low-cost, low-accuracy 
remote sensing (Scenario 1) to increasingly detailed hybrid ground/remote approaches incorporating on-site dipwells, soil analysis, and hyperspectral data (Scenarios 2–4). Reported 
GHG coverage (CO₂, CH₄, N₂O) and indicative accuracy reflect each method’s capacity to resolve drivers of emissions. 

Scenario Assumed 
measurement 
protocol 

Item Annual operational cost Initial capital cost GHG 
Coverage 

Accuracy 

250,000ha 1,952,000ha 250,000ha 1,952,000ha 

Scenario 1: Remote 
Sensing 
 
Light and Leaf area: 
Satellite derived VIs – 
Utilising open source 
MODIS, Landsat, Sentinel 
data 
 
Temperature: LST/ 
Meteorological data 
 
WTD: LSWI/MWI 

Open source satellite 
and meteorological 
data obtained, 
inspected and 
processed annually. 
 
Initial model 
development and 
calibration using 
existing UK and 
Ireland site 
measurements drawn 
from literature. 
 
 

 
Initial model 
development  
 
Annual data 
acquisition cost  
 
Data integration 
and processing 
 

 
- 
 
 

Nil 
 
 

£42,000 
 

 
 

Total: 
£42,000 

 

 
- 
 
 

Nil 
 
 

£84,000 
 

 
 

Total: 
£84,000 

 

 
£3,000,000 

 
 

- 
 
 

- 
 

 
 

Total 
£3,000,000 

 
£3,000,000 

 
 

- 
 
 

- 
 

 
 

Total 
£3,000,000 

 
 
 
 
 
 
 
 
 
 
 
CO2, CH4 
(Missing 
N2O) 

Poor  
 
LSWI provides 
an 
inconsistent 
approximation 
for water table 
over longer 
time periods, 
and modelling 
of respiration 
and CH4 
requires 
information 
on WTD. 

Scenario 2: Remote 
Sensing with on-
site water table 
measurement 
 
Light and Leaf area: 
Satellite derived VIs – 
Utilising open source 
MODIS, Landsat, Sentinel 
data 
 
Temperature: LST/ 
Meteorological data 
 

Open source satellite 
and meteorological 
data obtained, 
inspected and 
processed annually. 
 
Initial model 
development and 
calibration using 
existing UK and 
Ireland site 
measurements drawn 
from literature. 
 
Average annual water 
table depth 

 
Initial model 
development  
 
Dipwell 
construction cost 
(low, high) 
 
Annual data 
acquisition cost  
 
Data integration 
and processing 
 
Annualised cost of 
5 yearly dipwell 

 
- 
 
 

- 
 
 
 
 

Nil 
 

£63,000 
 
 

£450,000 
 

 
- 
 
 

- 
 
 
 
 

Nil 
 

£126,000 
 
 

£3,500,000 
 

 
£3,000,000 

 
 

£4,125,000 to 
£5,125,000 

 
 
 
 

- 
 

- 
 
 

- 

 
£3,000,000 

 
 

£32,208,000 to 
£40,016,000 

 
 
 
 

- 
 

- 
 
 

- 
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WTD: Dipwells installed 
at site.  Remote 
monitoring of water table 
by pressure transducer.   

determined from 3-5 
dipwells per 100ha. 
installed at site and 
remote sensing by 
pressure transducer.  

servicing by 
ecological surveyor. 

 
Total: 

£513,000 
 

 
Total: 

£3,626,000 
 

 
Total: 

£7,125,000 to 
£8,125,000 

 
Total: 

£35,208,000 to 
£43,016,000 

 
CO2, CH4 
(Missing 
N2O) 

 
Good and 
costly 

Scenario 3: Remote 
Sensing with on-
site water table 
measurement and 
soil testing to target 
N2O 
 
Light and Leaf area: 
Satellite derived VIs – 
Utilising open source 
MODIS, Landsat, Sentinel 
data 
 
Temperature: LST/ 
Meteorological data 
 
WTD: Dipwells installed 
at site.  Remote 
monitoring of water table 
by pressure transducer.  
Annual calibration. 
 
Nutrients and Ph: 
Annual soil testing. 
 

Open source satellite 
and meteorological 
data obtained, 
inspected and 
processed annually. 
 
Initial model 
development and 
calibration using 
existing UK and 
Ireland site 
measurements drawn 
from literature. 
 
Average annual water 
table depth 
determined from 3-5 
dipwells per 100ha. 
installed at site and 
remote sensing by 
pressure transducer.  
 
Annual soil testing of 
9,000ha cropped 
peatland area. 
 

 
Initial model 
development  
 
Dipwell 
construction cost 
(low, high) 
 
Annual data 
acquisition cost  
 
Data integration 
and  processing 
 
Annualised cost of 
5 yearly dipwell 
servicing by 
ecological surveyor. 
 
Annual soil testing 

 
- 

 
 

- 
 

 
Nil 

 
 

£63,000 
 
 

£450,000 
 
 
 
 

£8,000 
 
 

Total: 
£521,000 

 
- 

 
 

- 
 
 

Nil 
 
 

£126,000 
 
 

£3,500,000 
 
 
 
 

£56,000 
 
 

Total: 
£3,682,000 

 
 

 
£3,000,000 

 
 

£4,125,000 to 
£5,125,000 

 
 

- 
 
 

- 
 
 

- 
 
 
 
 

- 
 

Total: 
£7,125,000 to 

£8,125,000 

 
£3,000,000 

 
 

£32,208,000 to 
£40,016,000 

 
 
 

- 
 
 

- 
 
 

- 
 
 
 
 

- 
Total: 

£35,208,000 to 
£43,016,000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CO2, CH4, 
N2O 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Good and 
costly 
 
Improves 
applicability 
of Scenario 2 
to better 
reflect N2O 
emissions 
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Scenario 4: 
Hyperspectral data 
with on-site water 
table and soil 
testing 
 
Light and Leaf area: 
Hyperspectral data 
 
Temperature: LST/ 
Meteorological data 
 
WTD: Dipwells installed 
at site.  Remote 
monitoring of water table 
by pressure transducer.  
Annual calibration. 
 
Nutrients and Ph: 
Annual Soil testing. 

Hyperspectral data 
obtained, inspected 
and processed 
annually. 
 
Initial model 
development and 
calibration using 
existing UK and 
Ireland site 
measurements drawn 
from literature. 
 
Average annual water 
table depth 
determined from 3-5 
dipwells per 100ha. 
installed at site and 
remote sensing of 
pressure transducers. 
 
Annual soil testing of 
9,000 ha cropped 
peatland area 

 
Initial model 
development  
 
Dipwell 
construction cost 
(low, high) 
 
hyperspectral data 
acquisition cost  
 
Data integration 
and processing 
 
Annualised cost of 
5 yearly dipwell 
servicing by 
ecological surveyor. 
 
Annual soil testing 
 

 
- 
 
 

- 
 
 

£110,000 
 
 

£63,000 
 
 

£450,000 
 
 
 
 

£8,000 
 
 

Total: 
£631,000 

 
- 
 
 

- 
 
 

£860,000 
 
 

£126,000 
 
 

£3,500,000 
 
 
 
 

£56,000 
 

 
Total: 

£4,542,000 

 
£3,000,000 

 
 

£4,125,000 to 
£5,125,000 

 
 

- 
 
 

- 
 
 

- 
 
 
 
 
 

 
Total: 

£7,125,000 to 
£8,125,000 

 
£3,000,000 

 
 

£32,208,000 to 
£40,016,000 

 
 

- 
 
 

- 
 
 

- 
 
 
 
 
 

 
Total: 

£35,208,000 to 
£43,016,000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CO2, CH4, 
N2O 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Good and 
costly  
 
Improves 
accuracy at 
predicting 
GPP 
compared to 
scenario 3 but 
may lose 
spatial 
resolution.   



 

Water-table depth is the most salient proxy, as there is strong site-level evidence that it 
responds to restoration, it is easy to interpret, supports independent verification and 
underpins the interpretation of remote indicators. Unfortunately, water-table depth was 
found to be the most difficult proxy to measure remotely. We found that a network of 
dipwells is currently the only viable approach to measure water-table depth at a 
sufficient accuracy to be the basis of an emissions tax. Although costly using current 
methods, more efficient, lower-cost approaches are currently being developed via 
Environment Agency funded research by the Centre for Ecology and Hydrology, with 
additional scope to explore supplementary citizen science approaches and low-cost eH 
probing to support interpretation of hydrological conditions (Brennand, 2025), subject 
to appropriate quality control. 
 
To support consideration of feasible pathways, alternative measurement configurations 
were grouped into a small number of illustrative scenarios in Table 2. Each scenario 
combines remote and ground-based methods to differing degrees and reflects trade-
offs between accuracy, cost, spatial resolution and administrative burden. The 
scenarios are not proposals for implementation but structured comparisons intended 
to clarify the implications of different design choices for a land emissions carbon tax. 
The table shows that purely remote sensing approaches are not currently sufficient to 
estimate peatland greenhouse gas emissions with the accuracy required for taxation. 
Scenarios relying only on satellite-derived proxies fail primarily because water-table 
depth, the dominant control on CO₂ and CH₄ emissions, cannot yet be measured 
remotely with adequate reliability at parcel scale. As a result, these approaches risk 
systematic misestimation of liabilities. 
 
Introducing ground-based water-table measurements produces a step change in 
accuracy, but this improvement comes with a substantial increase in cost and 
operational complexity. Scenarios that incorporate dipwells enable emissions 
estimates that are responsive to management and restoration, but installation, 
maintenance and quality control represent the dominant cost driver across all higher-
accuracy options. Although not yet commercially available, ongoing research by CEH 
into the development of low-cost WTD sensors that could substantially reduce these 
costs is significant.  
 
Adding further measurements, such as soil testing to capture N₂O emissions, 
marginally improves completeness but does not fundamentally alter the cost–accuracy 
balance. These additions are relevant only for limited areas of cropped peat and do not 
resolve the core constraint imposed by water-table measurement requirements. Use of 
hyperspectral data improves estimation of photosynthetic uptake, but this gain is 
incremental relative to the costs incurred and may reduce spatial resolution, which is 
problematic for attribution to individual landholdings. Across all scenarios, Table 2 
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shows that accuracy gains are non-linear relative to cost. The largest improvement 
occurs when water-table depth is measured directly, after which additional expenditure 
yields diminishing returns. This suggests that a fully accurate, nationally applied 
emissions-based land tax is not currently feasible without disproportionate cost, but 
that narrower, phased or pilot approaches targeting the highest-emitting peat types are 
technically plausible, with further research focussed on reducing the cost and 
improving the scalability of water-table measurement. 
 
A tax linked to emission estimates derived from calibrated water-table–flux response 
functions would complement, not replace, the UK inventory and the Peatland Code’s 
class-based factors for bogs (note the Peatland Code already uses this approach in 
fens). Estimating emissions using models which use several proxy measurements as 
inputs would need to be calibrated, validated in the field and accompanied by clear 
rules to calculate and manage uncertainty.  
 
However, proxies are indirect and rely on empirically fitted response functions (and their 
parameterisation), model calibration to local conditions and periodic ground truthing, 
which would benefit from spatially balanced sampling approaches to ensure field 
measurements are representative and capture meaningful hydrological and ecological 
variability (see Appendix 1). As they can be sensitive to weather, sensor limits and site 
heterogeneity, it is important to quantify uncertainty and factor this into decisions 
based on proxy data. As such, there are significant risks associated with the design and 
implementation of a carbon emissions land tax, based on current methods and 
evidence, including: 

• The investment, skills and resources required to capture water table depth at 
sufficient spatial resolution; 

• The confidence levels around the accuracy of data on which the tax will be 
based, particularly when compared to the authenticity and robustness of data 
on which other taxes are assessed; 

• The complexity of measurement involved and the associated costs for tax 
authorities, taxpayers and adjudicators in making and assessing appeals; and 

• The responsiveness of such a measurement regime to changes in emissions and 
its ability to accommodate reliefs to incentivise improved land management 
techniques  

 
These challenges risk misestimating liabilities and imposing significant transaction 
costs on the tax authority and landowners when assessments are contested. As such, 
there are two broad pathways towards the design of a tax with sufficient accuracy, 
transparency, responsiveness and cost-effectiveness.  
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First, based on the evidence in this report, research may be commissioned to fill critical 
evidence gaps prior to a re-evaluation of the technical feasibility of administering a 
carbon emissions land tax. This could also usefully include the piloting of protocols and 
assessment of likely implementation costs, as outlined at the end of this section. 
Research gaps that could be addressed include:  

• Calibrate functions which estimate emissions based on remotely-measured-
water-table-depth (and possibly other proxy variables) for Scotland’s main peat 
types and management states using multi-year chamber and eddy-covariance 
measurements, if possible based on the SCOT2FLUX network of research-grade 
reference sites (Artz et al., 2023) with analogous flux sites elsewhere in the UK 
and Ireland (of which there are now many); 

• Determine parcel- or holding-scale minimums for dipwell existing evidence2, 
relative to site features such as slope breaks and drainage features etc; 
Build and validate national screening layers of peat extent and condition with 
pixel-level uncertainty suitable for setting default liabilities, published as dated, 
numbered releases with documented changes;  

• Investigate options for improving remote inference of water-table depth, for 
example, by integrating radar, LiDAR and optical indices, with additional ground 
truthing data; 

• Establish whether low-cost functional indicators of peat structure and chemistry 
can be used alongside water-table depth to verify recovery trajectories and time-
lagged emissions reductions. Evidence indicates that peatland recovery 
following restoration is governed by changes in pore networks that control water 
storage and gaseous exchange (Rezanezhad et al., 2016), with hydrological, 
structural and carbon recovery progressing over years to decades and lagging 
behind surface vegetation change (Spencer et al., 2017; Brennand, 2025). µCT 
studies show that restoration increases vertically connected pore structures that 
support sustained saturation and restrict oxygen diffusion, while laterally 
connected drainage-related pores decline over 5–10 years, coinciding with 
improved bulk density, surface moisture, pH and redox potential (eH) profiles 
(Brennand, 2025). These functional changes are consistent with declining CO₂ 
emissions over decadal timescales and determine when restoration transitions 
from net carbon loss to net carbon benefit once intervention carbon costs are 
accounted for (Brennand et al., 2025). Research is needed to test whether 
depth-resolved pH and eH profiles can act as robust, auditable proxies of 
functional recovery and net emissions reduction, and whether such indicators 
could be used as eligibility triggers or scaling factors for tax relief within a water-

 
2 For example, Artz et al. (2023) show that around seven loggers can estimate mean annual water-table 
depth within ~50 mm at 95% confidence on a rewetted raised bog with diminishing returns beyond ~15 
and that daily readings are sufficient for annual means. 
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table-depth–linked tax model, rather than relying on fixed assumptions about 
recovery and payback. 

Second, a tax could be designed with a narrowed scope, that could be introduced via 
pilots or in phases, to reduce risks and learn lessons for further refinement and wider 
roll-out. Appendix 1 suggests how, based on the strengths and weaknesses of the 
methods reviewed in this report, such a phased approach or pilot might be designed, 
starting with a narrow scope pilot targeting only the highest emitting eroding peats, 
verified using lower cost visual methods  (e.g., including recent orthophotography, UAV 
imagery, repeat LiDAR or photogrammetric surface models to detect erosion features 
and stabilisation, and dated georeferenced photographs of restoration works). Next, 
pilots could be extended to drained or modified peatlands using proxy-based 
approaches centred on water-table depth, with default liabilities set from national 
screening layers and adjusted using rolling multi-year WTD evidence collected to a 
published minimum standard. Proxy estimates would be supplemented by sampled 
direct measurements for calibration and verification, with the intensity of measurement 
and review prioritised according to quantified uncertainty, dispute risk and the 
magnitude of claimed liability adjustments.  
 
In addition to filling the evidence gaps identified above, it would therefore also be 
important to:  

• Trial verification, audit and appeals protocols (including the proposals in 
Appendix 4 for desk screening, targeted analyst review, evidence requirements 
and triggers for field checks); 

• Run place-based pilots of the narrow scope simple evidence rule proposed in 
Appendix 4, to quantify accuracy, costs, likely dispute rates and operational 
feasibility.  

• Use pilot data to model likely administrative and transaction costs under 
authority-determined, self-assessment and hybrid designs to inform resourcing 
and case-handling capacity.   

 
It is notable that the level of complexity and uncertainty involved in the proposals for a 
tax based on current methods and evidence is an outlier compared to most other taxes 
on land or property, even in the context of land value based taxes which rely on 
considerable technical assessment and are routinely challenged by taxpayers with 
disproportionate collection costs (e.g., land taxes applied in Australia and some US 
jurisdictions, and property taxes based on assessed value, such as the Ireland Local 
Property Tax). Whilst it may be technically possible to develop the broad structure 
articulated in Appendix 1 to pilot a tax with a narrow scope, doing so without further 
research may expose any regime to considerable challenge involving significant costs 
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contrary to Scottish Government’s tax principles of economic efficiency, certainty and 
convenience, and risking undermining the viability of the tax going forward. 

Evidence on likely objections is outside scope, but it has implications for feasibility 
because compliance and appeals are likely to be shaped by administrative burden and 
by contested attribution of liabilities. Practical issues such as access constraints, 
shared tenure and crofting contexts, and coordination across boundaries could 
increase dispute rates and collection costs unless measurement protocols and 
evidence standards are transparent and workable in low-capacity settings. There is also 
a feasibility risk that expectations of future liabilities could incentivise baseline gaming 
(for example, pre-emptive drainage), reinforcing the need for robust baselines and clear 
rules on evidence and change over time. 

Notwithstanding these wider issues around the design of any future tax, further 
research is required to refine measurement approaches to a level of robustness that 
could enable an equitable, practical and potentially cost-effective regime. This is an 
area of rapid development, not least in remote sensing, which may introduce additional 
measurement options, likely still proxy-reliant, capable of delivering datasets of 
sufficient resolution, reliability and transparency for administrative use. In the 
meantime, research should focus on the key challenges set out above, including 
improving parcel-scale inference of water-table depth, strengthening calibration and 
validation across Scotland’s main peat types and management states, and developing 
published baselines and uncertainty rules suitable for verification, audit and appeals. 
 
 
Acknowledgements 
 
We are grateful to the following reviewers for constructive feedback on this work: Chris 
Evans, Rebekka Artz, Renee Kirkvliet-Hermans, Miranda Geelhoed, Jill Robbie, Joseph 
Holden, Arina Machine, Ken Loades and Mogens Humlekrog Greve.  
 
 
 
 
 
 
 
 
 



  25 

5 References 
Adkinson, A.C., Syed, K.H. and Flanagan, L.B. (2011) ‘Contrasting responses of growing season 
ecosystem CO2 exchange to variation in temperature and water table depth in two peatlands in 
northern Alberta, Canada’, Journal of Geophysical Research: Biogeosciences, 116(G1). 
Available at: https://doi.org/10.1029/2010JG001512. 

Albert-Saiz, M. et al. (2025) ‘A Multi-Model Gap-Filling Strategy Increases the Accuracy of GPP 
Estimation from Periodic Chamber-Based Flux Measurements on Sphagnum-Dominated 
Peatland’, Sustainability, 17(2), p. 393. Available at: https://doi.org/10.3390/su17020393. 

Alshammari, L. et al. (2020) ‘Use of Surface Motion Characteristics Determined by InSAR to 
Assess Peatland Condition’, Journal of Geophysical Research: Biogeosciences, 125(1), p. 
e2018JG004953. Available at: https://doi.org/10.1029/2018JG004953. 

Antonijevic, D. et al. (2023) ‘The unexpected long period of elevated CH4 emissions from an 
inundated fen meadow ended only with the occurrence of cattail (Typha latifolia)’, GLOBAL 
CHANGE BIOLOGY, 29(13), pp. 3678–3691. Available at: https://doi.org/10.1111/gcb.16713. 

Arias-Ortiz, A. et al. (2021) ‘Tidal and Nontidal Marsh Restoration: A Trade-Off Between Carbon 
Sequestration, Methane Emissions, and Soil Accretion’, Journal of Geophysical Research: 
Biogeosciences, 126(12), p. e2021JG006573. Available at: 
https://doi.org/10.1029/2021JG006573. 

Artz, R. et al. (2023) Designing an optimal future Peatland Monitoring Framework for Scotland. 
climateXchange (CXC). Available at: https://www.climatexchange.org.uk/wp-
content/uploads/2023/09/cxc-a-working-paper-scoping-a-national-peatland-monitoring-
framework-march-23.pdf. 

Aubinet, M., Vesala, T. and Papale, D. (2012) Eddy covariance: a practical guide to measurement 
and data analysis. Springer Science & Business Media. 

Baldocchi, D., Hicks, B. and Meyers, T. (1988) ‘Measuring Biosphere-Atmosphere Exchanges of 
Biologically Related Gases with Micrometeorological Methods’, Ecology., 69, pp. 1331-1340. 
Available at: https://doi.org/10.2307/1941631. 

Baldocchi, D.D. (2020) ‘How eddy covariance flux measurements have contributed to our 
understanding of Global Change Biology’, Global change biology, 26(1), pp. 242–260. 

Balogun, O., Bello, R. and Higuchi, K. (2023) ‘Terrestrial CO2 exchange diagnosis using a 
peatland-optimized vegetation photosynthesis and respiration model (VPRM) for the Hudson 
Bay Lowlands’, Science of The Total Environment, 875, p. 162591. Available at: 
https://doi.org/10.1016/j.scitotenv.2023.162591. 

Baren, S.A. van et al. (2025) ‘Greenhouse gas reporting of the LULUCF sector in the Netherlands: 
Methodological background, update 2025’. Available at: https://doi.org/10.18174/687310. 

Boonman, J. et al. (2024) ‘Transparent automated CO2 flux chambers reveal spatial and 
temporal patterns of net carbon fluxes from managed peatlands’, ECOLOGICAL INDICATORS, 
164. Available at: https://doi.org/10.1016/j.ecolind.2024.112121. 



  26 

Brennand, J. R. (2025). Evaluating UK Blanket Peatland Restoration: Structure, Function, and 
Net Carbon Benefit. PhD thesis, University of Cumbria. Available at: 
https://insight.cumbria.ac.uk/id/eprint/9234 

Brennand, J. R., Barker, J. A., Manns, H. and Carr, S. J. (2025). Evaluating the carbon costs of UK 
blanket peatland restoration. Carbon Management, 16(1), e2574026. 
https://doi.org/10.1080/17583004.2025.2574026Bridgham, S.D. et al. (2013) ‘Methane 
emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to 
global scales’, Global Change Biology, 19(5), pp. 1325–1346. Available at: 
https://doi.org/10.1111/gcb.12131. 

Brown, P. et al. (2024) UK Greenhouse Gas Inventory, 1990 to 2022: Annual Report for 
Submission under the Framework Convention on Climate Change. 978-1-7393512-0–5. 
Available at: https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2404111649_ukghgi-
90-22_Main_Issue1.pdf. 

Buareal, K. et al. (2024) ‘Solar-Induced Chlorophyll Fluorescence as a Potential Proxy for Gross 
Primary Production and Methane Emission in a Cool-Temperate Bog in Northern Japan’, Journal 
of Geophysical Research: Biogeosciences, 129(7), p. e2023JG007956. Available at: 
https://doi.org/10.1029/2023JG007956. 

Camps-Valls, G. et al. (2021) ‘A unified vegetation index for quantifying the terrestrial biosphere’, 
Science Advances, 7(9), p. eabc7447. 

Cao, D. et al. (2025) ‘Evaluating the Performance of Satellite-Derived Vegetation Indices in Gross 
Primary Productivity (GPP) Estimation at 30 m and 500 m Spatial Resolution’, Remote Sensing, 
17(19), p. 3291. Available at: https://doi.org/10.3390/rs17193291. 

Climate Change Committee (2022) Progress in reducing emissions in Scotland: 2022 Report to 
Parliament. Available at: https://www.theccc.org.uk/wp-content/uploads/2022/12/Progress-in-
reducing-emissions-in-Scotland-2022-Report-to-Parliament.pdf (Accessed: 2 March 2023). 

Delwiche, K.B. et al. (2025) ‘Dynamic methane emissions in a restored wetland: Decadal 
insights into uncertain climate outcomes and critical science needs’, Agricultural and Forest 
Meteorology. Available at: https://doi.org/10.1016/j.agrformet.2025.110735. 

Eggleston, H. et al. (2006) ‘2006 IPCC guidelines for national greenhouse gas inventories’. 

Envirotech Online (2025) Is Natural England’s Peat Map a monitoring failure?, Envirotech Online. 
Available at: https://www.envirotech-online.com/news/soil-testing/95/international-
environmental-technology/natural-england-peat-map-monitoring-failure/64908 (Accessed: 6 
November 2025). 

Erkens, G. et al. (2022) SOMERS: Subsurface Organic Matter Emission Registration System. 
Available at: https://www.nobveenweiden.nl/wp-content/uploads/2022/12/SOMERS-1.0-
rapport-2022-BIJLAGEN.pdf (Accessed: 29 October 2025). 

Evans, C. et al. (2017) ‘Implementation of an Emissions Inventory for UK Peatlands’, p. 88pp. 

Evans, C. et al. (2023) ‘Aligning the peatland code with the UK peatland inventory’.  

https://insight.cumbria.ac.uk/id/eprint/9234
https://doi.org/10.1080/17583004.2025.2574026


  27 

Evans, C.D. et al. (2021) ‘Overriding water table control on managed peatland greenhouse gas 
emissions’, Nature, 593(7860), pp. 548–552. Available at: https://doi.org/10.1038/s41586-021-
03523-1. 

Frenzel, P. and Karofeld, E. (2000) ‘CH4 emission from a hollow-ridge complex in a raised bog: 
The role of CH4 production and oxidation’, Biogeochemistry, 51(1), pp. 91–112. Available at: 
https://doi.org/10.1023/A:1006351118347. 

Fuß, R. et al. (2025) ‘LULUCF database (submission 2025)’. Available at: 
https://doi.org/10.3220/DATA20250122144856-0. 

German Environment Agency (2025) Submission under the United Nations Framework 
Convention 2025. Umweltbundesamt. Available at: 
https://www.umweltbundesamt.de/en/publikationen/submission-under-the-united-nations-
framework-10 (Accessed: 29 October 2025). 

Ghafouri, B. (2023) ‘Fairness in Climate Change Mitigation: The Case of Carbon Taxation’, 
American Journal of Climate Change, 12(04), pp. 548–578. Available at: 
https://doi.org/10.4236/ajcc.2023.124025. 

Günther, A. et al. (2020a) ‘Prompt rewetting of drained peatlands reduces climate warming 
despite methane emissions’, Nature Communications, 11(1), p. 1644. Available at: 
https://doi.org/10.1038/s41467-020-15499-z. 

Günther, A. et al. (2020b) ‘Prompt rewetting of drained peatlands reduces climate warming 
despite methane emissions’, Nature Communications, 11(1), p. 1644. Available at: 
https://doi.org/10.1038/s41467-020-15499-z. 

Gyldenk, S. et al. (2023) ‘MAPPING WATER TABLE DEPTH ON AGRICULTURAL ORGANIC SOILS 
AND CONSEQUENCES FOR THE CO2-EMISSION’. JRC meeting. Available at: 
https://forest.jrc.ec.europa.eu/media/filer_public/26/09/2609abcb-db05-4606-b48f-
1240777f841f/48_steen_gyldenkaerne_mapping_water_table_depth_on_agricultural_organic_s
oils.pdf (Accessed: 29 October 2025). 

He, H. et al. (2025) ‘Spring phenology in photosynthesis control and modeling for a temperate 
bog’, Frontiers in Environmental Science, 13. Available at: 
https://doi.org/10.3389/fenvs.2025.1548578. 

Heine, M.D., Norregaard, M.J. and Parry, I.W. (2012) Environmental tax reform: principles from 
theory and practice to date. International Monetary Fund. 

Heiskanen, L. et al. (2021) ‘Carbon dioxide and methane exchange of a patterned subarctic fen 
during two contrasting growing seasons’, Biogeosciences, 18(3), pp. 873–896. Available at: 
https://doi.org/10.5194/bg-18-873-2021. 

Herbst, M. et al. (2011) ‘Interpreting the variations in atmospheric methane fluxes observed 
above a restored wetland’, Agricultural and Forest Meteorology, 151(7), pp. 841–853. Available 
at: https://doi.org/10.1016/j.agrformet.2011.02.002. 

Hiraishi, T. et al. (2014) ‘2013 supplement to the 2006 IPCC guidelines for national greenhouse 
gas inventories: Wetlands’, IPCC, Switzerland [Preprint]. 



  28 

Hrysiewicz, A. et al. (2023) ‘SAR and InSAR data linked to soil moisture changes on a temperate 
raised peatland subjected to a wildfire’, Remote Sensing of Environment, 291, p. 113516. 
Available at: https://doi.org/10.1016/j.rse.2023.113516. 

Junttila, S. et al. (2021) ‘Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote 
Sensing Data’, Remote Sensing, 13(4), p. 818. Available at: https://doi.org/10.3390/rs13040818. 

Juszczak, R. (2013) ‘Biases in methane chamber measurements in peatlands’, Int. Agrophys., 
27(2), pp. 159–168. Available at: https://doi.org/10.2478/v10247-012-0081-z. 

JNCC (2009). Common Standards Monitoring Guidance for Upland Habitats. Peterborough: 
Joint Nature Conservation Committee, 107 pp. Available at: 488 
https://data.jncc.gov.uk/data/78aaef0b-00ef-461d-ba71-cf81a8c28fe3/CSMUplandHabitats-
2009.pdf 

Kalacska, M. et al. (2018) ‘Estimating Peatland Water Table Depth and Net Ecosystem Exchange: 
A Comparison between Satellite and Airborne Imagery’, Remote Sensing, 10(5), p. 687. 
Available at: https://doi.org/10.3390/rs10050687. 

Kalhori, A. et al. (2024) ‘Temporally dynamic carbon dioxide and methane emission factors for 
rewetted peatlands’, Communications Earth & Environment, 5(1), p. 62. Available at: 
https://doi.org/10.1038/s43247-024-01226-9. 

Kandel, T.P. et al. (2020) ‘Methane fluxes from a rewetted agricultural fen during two initial years 
of paludiculture’, SCIENCE OF THE TOTAL ENVIRONMENT, 713. Available at: 
https://doi.org/10.1016/j.scitotenv.2020.136670. 

Kandel, T.P., Elsgaard, L. and Laerke, P.E. (2017) ‘Annual balances and extended seasonal 
modelling of carbon fluxes from a temperate fen cropped to festulolium and tall fescue under 
two-cut and three-cut harvesting regimes’, GLOBAL CHANGE BIOLOGY BIOENERGY, 9(12), pp. 
1690–1706. Available at: https://doi.org/10.1111/gcbb.12424. 

Kljun, N. et al. (2004) ‘A simple parameterisation for flux footprint predictions’, Boundary-Layer 
Meteorology, 112(3), pp. 503–523. 

Kermorvant, C., D’Amico, F., Bru, N., Caill-Milly, N. and Robertson, B. (2019). Spatially balanced 
sampling designs for environmental surveys. Environmental Monitoring and Assessment, 
191(8), Article 524. https://doi.org/10.1007/s10661-019-7666-y 

Knox, S.H. et al. (2019) ‘FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and Future 
Directions’, BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 100(12), pp. 2607–
2632. Available at: https://doi.org/10.1175/BAMS-D-18-0268.1. 

Koch, J. et al. (2023) ‘Water-table-driven greenhouse gas emission estimates guide peatland 
restoration at national scale’, Biogeosciences, 20(12), pp. 2387–2403. Available at: 
https://doi.org/10.5194/bg-20-2387-2023. 

Kopansky, D. et al. (2022) ‘UNEP-2022. Global Peatlands Assessment–The State of the World’s 
Peatlands’. UNESCO. 

Kotchen, M. (2022) Taxing externalities: Revenue vs. welfare gains with an application to US 
carbon taxes. National Bureau of Economic Research. 

https://data.jncc.gov.uk/data/78aaef0b-00ef-461d-ba71-cf81a8c28fe3/CSMUplandHabitats-2009.pdf
https://data.jncc.gov.uk/data/78aaef0b-00ef-461d-ba71-cf81a8c28fe3/CSMUplandHabitats-2009.pdf
https://doi.org/10.1007/s10661-019-7666-y


  29 

Krohn, J. et al. (2017) ‘CH4 and CO2 production below two contrasting peatland micro-relief 
forms: An inhibitor and δ13C study’, Science of The Total Environment, 586, pp. 142–151. 
Available at: https://doi.org/10.1016/j.scitotenv.2017.01.192. 

Laine, A. et al. (2006) ‘Estimating net ecosystem exchange in a patterned ecosystem: Example 
from blanket bog’, Agricultural and Forest Meteorology, 138(1), pp. 231–243. Available at: 
https://doi.org/10.1016/j.agrformet.2006.05.005. 

Lees, K.J. et al. (2021) ‘Assessing the reliability of peatland GPP measurements by remote 
sensing: From plot to landscape scale’, Science of The Total Environment, 766, p. 142613. 
Available at: https://doi.org/10.1016/j.scitotenv.2020.142613. 

Levy, P.E. et al. (2012) ‘Methane emissions from soils: Synthesis and analysis of a large UK data 
set’, Global Change Biology. Available at: https://doi.org/10.1111/j.1365-2486.2011.02616.x. 

Li, J. et al. (2024) ‘Analysis of methane emission characteristics and environmental response in 
natural wetlands’, Atmospheric Environment, 334, p. 120696. Available at: 
https://doi.org/10.1016/j.atmosenv.2024.120696. 

Lu, W. et al. (2017) ‘Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: a meta-
analysis of eddy covariance data’, GLOBAL CHANGE BIOLOGY, 23(3), pp. 1180–1198. Available 
at: https://doi.org/10.1111/gcb.13424. 

Marushchak, M.E. et al. (2016) ‘Methane dynamics in the subarctic tundra: combining stable 
isotope analyses, plot- and ecosystem-scale flux measurements’, Biogeosciences, 13(2), pp. 
597–608. Available at: https://doi.org/10.5194/bg-13-597-2016. 

Morton, P.A. and Heinemeyer, A. (2019) ‘Bog breathing: the extent of peat shrinkage and 
expansion on blanket bogs in relation to water table, heather management and dominant 
vegetation and its implications for carbon stock assessments’, Wetlands Ecology and 
Management, 27(4), pp. 467–482. Available at: https://doi.org/10.1007/s11273-019-09672-5. 

Natural England (2025) England Peat Map - NERR149, Natural England - Access to Evidence. 
Available at: https://publications.naturalengland.org.uk/publication/5075614867128320 
(Accessed: 6 November 2025). 

Mastrantonis, S., Langlois, T., Radford, B., Spencer, C., de Lestang, S. and Hickey, S. (2024). 
Revealing the impact of spatial bias in survey design for habitat mapping: A tale of two sampling 
designs. Remote Sensing Applications: Society and Environment, 36, 101327. 
https://doi.org/10.1016/j.rsase.2024.101327 

NatureScot (2025) Restoring Scotland’s Peatlands. Available at: 
https://www.nature.scot/professional-advice/land-and-sea-management/carbon-
management/restoring-scotlands-peatlands (Accessed: 21 October 2025). 

NFU (2025) New peat map for England to inform wider government policy. Available at: 
https://www.nfuonline.com/updates-and-information/new-peat-map-for-england-published/ 
(Accessed: 6 November 2025). 

Nielsen, C.K., Elsgaard, L. and Lærke, P.E. (2024) ‘Site-dependent carbon and greenhouse gas 
balances of five fen and bog soils after rewetting and establishment of Phalaris arundinacea 

https://doi.org/10.1016/j.rsase.2024.101327


  30 

paludiculture’, Science of The Total Environment, 957, p. 177677. Available at: 
https://doi.org/10.1016/j.scitotenv.2024.177677. 

Nielsen, O.-K. et al. (2025) Denmark’s National Inventory Document 2025 - Emission Inventories 
1990-2023 - Submitted under the United Nations Framework Convention on Climate Change 
and the Paris Agreement. Report No. 655. Aarhus University. 

NOBV (2019) ‘Netherlands Research Programme on Greenhouse Gas Dynamics in Peatlands 
and Organic Soils (NOBV)’. Available at: https://www.nobveenweiden.nl/en/about-nobv/ 
(Accessed: 29 October 2025). 

NOBV (2023) ‘Findings: calculation rules based on SOMERS 2.0 (programme update)’. Available 
at: https://www.nobveenweiden.nl/en/findings/ (Accessed: 29 October 2025). 

Pavelka, M. et al. (2018) ‘Standardisation of chamber technique for CO2, N2O and CH4 fluxes 
measurements from terrestrial ecosystems’, Int. Agrophys., 32(4), pp. 569–587. Available at: 
https://doi.org/10.1515/intag-2017-0045. 

Pihlatie, M.K. et al. (2013) ‘Comparison of static chambers to measure CH4 emissions from 
soils’, Agricultural and Forest Meteorology, 171–172, pp. 124–136. Available at: 
https://doi.org/10.1016/j.agrformet.2012.11.008. 

Ramirez, J.A. et al. (2015) ‘Ebullition of methane from peatlands: Does peat act as a signal 
shredder?’, Geophysical Research Letters, 42(9), pp. 3371–3379. Available at: 
https://doi.org/10.1002/2015GL063469. 

Revenga, J.C. et al. (2024) ‘Independent estimates of net carbon uptake in croplands: UAV-
LiDAR and machine learning vs. eddy covariance’, Agricultural and Forest Meteorology, 355, p. 
110106. Available at: https://doi.org/10.1016/j.agrformet.2024.110106. 

Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T. and Van Cappellen, P. 
(2016). Structure of peat soils and implications for water storage, flow and solute transport: A 
review update for geochemists. Chemical Geology, 429, pp. 75–84. 
https://doi.org/10.1016/j.chemgeo.2016.03.010 

Rosenberry, D.O., Glaser, P.H. and Siegel, D.I. (2006) ‘The hydrology of northern peatlands as 
affected by biogenic gas: current developments and research needs’, Hydrological Processes, 
20(17), pp. 3601–3610. Available at: https://doi.org/10.1002/hyp.6377. 

Schaller, C., Hofer, B. and Klemm, O. (2022) ‘Greenhouse Gas Exchange of a NW German 
Peatland, 18 Years After Rewetting’, Journal of Geophysical Research: Biogeosciences. 
Available at: https://doi.org/10.1029/2020JG005960. 

Schelhaas, M.J. et al. (2024) Greenhouse gas reporting of the LULUCF sector in the 
Netherlands : Methodological background, update 2024. Wageningen: WOT Natuur & Milieu. 
Available at: https://doi.org/10.18174/648278. 

Scottish Government (2021) Framework for Tax 2021. Available at: 
https://www.gov.scot/binaries/content/documents/govscot/publications/strategy-
plan/2021/12/framework-tax-2021/documents/framework-tax-2021/framework-tax-
2021/govscot%3Adocument/framework-tax-2021.pdf (Accessed: 7 November 2025). 

https://doi.org/10.1016/j.chemgeo.2016.03.010


  31 

Spinosa, A., Fuentes-Monjaraz, M.A. and El Serafy, G. (2023) ‘Assessing the Use of Sentinel-2 
Data for Spatio-Temporal Upscaling of Flux Tower Gross Primary Productivity Measurements’, 
Remote Sensing, 15(3), p. 562. Available at: https://doi.org/10.3390/rs15030562. 

Spencer, K. L., Carr, S. J., Diggens, L. M., Tempest, J. A., Morris, M. A. and Harvey, G. L. (2017). 
The impact of pre-restoration land use and disturbance on sediment structure, hydrology and 
the sediment geochemical environment in restored saltmarshes. Science of the Total 
Environment, 587–588, pp. 47–58. https://doi.org/10.1016/j.scitotenv.2016.11.032 

Tampuu, T. et al. (2022) ‘CAN Bog Breathing be Measured by Synthetic Aperture Radar 
Interferometry’, in IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing 
Symposium. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing 
Symposium, pp. 16–19. Available at: https://doi.org/10.1109/IGARSS46834.2022.9883421. 

The James Hutton Institute (2024) Updating Peatland Condition Mapping, ArcGIS StoryMaps. 
Available at: https://storymaps.arcgis.com/stories/701f6f2b14dc4f17ab4c7c6ff014299a 
(Accessed: 6 November 2025). 

The James Hutton Institute (2025a) APGB case study: national deep-learning model for 
peatland drainage and erosion mapping. Available at: https://bluesky-world.com/wp-
content/uploads/2025/01/APGB-Case-Studies-2024_A4_James_Hutton.pdf (Accessed: 6 
November 2025). 

The James Hutton Institute (2025b) Unearthing the past – using historic maps to locate missing 
peatland, James Hutton Institute. Available at: https://www.hutton.ac.uk/unearthing-the-past-
using-historic-maps-to-locate-missing-peatland/ (Accessed: 6 November 2025). 

The Times (2025) Government’s AI peatland map ridiculed for confusing bog with rock. Available 
at: https://www.thetimes.com/uk/environment/article/defra-ai-peatland-map-cq9x80vnp 
(Accessed: 6 November 2025). 

Tiemeyer, Bärbel et al. (2020) ‘A new methodology for organic soils in national greenhouse gas 
inventories: Data synthesis, derivation and application’, Ecological Indicators, 109, p. 105838. 
Available at: https://doi.org/10.1016/j.ecolind.2019.105838. 

Tiemeyer, Baerbel et al. (2020) ‘A new methodology for organic soils in national greenhouse gas 
inventories: Data synthesis, derivation and application’, ECOLOGICAL INDICATORS, 109. 
Available at: https://doi.org/10.1016/j.ecolind.2019.105838. 

Turetsky, M.R. et al. (2014) ‘A synthesis of methane emissions from 71 northern, temperate, and 
subtropical wetlands’, Global Change Biology, 20(7), pp. 2183–2197. Available at: 
https://doi.org/10.1111/gcb.12580. 

Walker, R.Z. et al. (2025) ‘InSAR Coherence Linked to Soil Moisture, Water Level and 
Precipitation on a Blanket Peatland in Scotland’, Remote Sensing, 17(21), p. 3507. Available at: 
https://doi.org/10.3390/rs17213507. 

Wilson, D. et al. (2016) ‘Multiyear greenhouse gas balances at a rewetted temperate peatland’, 
Global Change Biology, 22(12), pp. 4080–4095. Available at: https://doi.org/10.1111/gcb.13325. 

https://doi.org/10.1016/j.scitotenv.2016.11.032


  32 

Wu, J. et al. (2011) ‘Dealing with microtopography of an ombrotrophic bog for simulating 
ecosystem-level CO2 exchanges’, Ecological Modelling, 222(4), pp. 1038–1047. Available at: 
https://doi.org/10.1016/j.ecolmodel.2010.07.015. 

Wu, J. et al. (2025) ‘Ecosystem-atmosphere exchange of methane in global upland and wetland 
ecosystems’, Agricultural and Forest Meteorology. Available at: 
https://doi.org/10.1016/j.agrformet.2024.110325. 

Xiao, X. et al. (2004) ‘Satellite-based modeling of gross primary production in an evergreen 
needleleaf forest’, Remote Sensing of Environment, 89(4), pp. 519–534. Available at: 
https://doi.org/10.1016/j.rse.2003.11.008. 

Xu, J. et al. (2023) Wetland functional relationships and drivers of change: literature data 
analysis. School of Geography, University of Leeds. 

Yallop, A., Thacker, J. and Clutterbuck, B. (2024) ‘Remote Sensing of Peatlands A Technical 
Review’. 

Yao, Y. et al. (2017) ‘Differences in estimating terrestrial water flux from three satellite-based 
Priestley-Taylor algorithms’, INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND 
GEOINFORMATION, 56, pp. 1–12. Available at: https://doi.org/10.1016/j.jag.2016.10.009. 

Zhang, J. et al. (2020) ‘Extrapolation and Uncertainty Evaluation of Carbon Dioxide and Methane 
Emissions in the Qinghai-Tibetan Plateau Wetlands Since the 1960s’, Frontiers in Earth Science, 
8. Available at: https://doi.org/10.3389/feart.2020.00361. 

Zou, J. et al. (2022) ‘Rewetting global wetlands effectively reduces major greenhouse gas 
emissions’, Nature Geoscience, 15(8), pp. 627–632. Available at: 
https://doi.org/10.1038/s41561-022-00989-0. 



 

Appendix 1: Design options for a land emissions carbon 
tax, based on current methods and evidence 
 

6.1 Evidence base for WTD as a primary driver of emissions 
The evidence reviewed in this report has shown that water-table depth (WTD) is the 
most consistent driver of GHG emissions across managed peatlands in temperate 
climates. In a UK and Ireland dataset, mean annual effective WTD alone explained most 
variation in annual CO₂ balance and much of the variation in CH₄, with linear and 
exponential responses respectively, which held true when other non- UK sites were 
included (Evans et al., 2021). Comparable patterns are reported in large chamber 
datasets from central Europe, which have been used to develop WTD-based response 
functions for drained organic soils (Tiemeyer et al., 2020). Some global analyses that 
pooled peatlands with other wetland types across multiple climate zones have ranked 
temperature more highly as a driver for methane and shown weaker or biome-specific 
WTD–CO₂ effects (Knox et al., 2019; Turetsky et al., 2014). However, Zou et al.’s (2022) 
global synthesis concluded that CO2-equivalent emissions from wetland sites were 
kept to a minimum when the water table was close the surface (-30 to -5cm). This 
suggests that in Scotland, where blanket bogs and heaths dominate, WTD is a highly 
relevant proxy for the annual net greenhouse gas exchange of these habitats. Low-cost 
redox potential (eH) measurements at and below the surface can provide 
complementary information on oxygen availability and persistent saturation, helping 
distinguish between hydrologically dynamic surface layers and more stable, anoxic sub-
surface zones associated with long-term carbon storage. Such indicators do not replace 
WTD-flux relationships, but can strengthen interpretation of snapshot WTD 
measurements and support identification of conditions conducive to sustained carbon 
retention and potential accumulation.  

 

6.2 Measurement options and proxy indicators for WTD and function 
There is case study evidence that it responds to many types of restoration and other 
forms of management and can be measured directly with dip wells or potentially 
inferred from variables such as InSAR-derived surface motion, Sentinel-1 backscatter–
based surface-reflectance-based moisture indices, LiDAR-derived topographic wetness 
and ditch density, and simple water-balance modelling. UaV deployed thermal, RGB 
and ground-penetrating radar also offers considerable potential to map WTD at site 
level over short to long temporal frames. Surface indicators of functional condition - 
including Sphagnum presence and microtopographic development, bare peat extent, 
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and graminoid or vascular dominance - are systematically linked to sub-surface 
hydrological structure, oxygen availability, and carbon retention, and  offer proxy 
indicators of functionality that could be integrated with remote sensing to support 
interpretation of WTD-based approaches (Brennand, 2025). However, more evidence is 
needed to confirm WTD responses to restoration across different peatland contexts, 
and there are currently significant limitations affecting the accuracy of remotely sensed 
proxies. Although a tax anchored to WTD-responsive estimates may be more likely to 
ensure that liabilities correspond reliably to restoration actions than one tied to 
changes in condition categories linked to emissions factors, significant attention would 
need to given to the management of risk and uncertainty arising from these 
methodological limitations.  

 

6.3 Administrative feasibility and costs 
The case for WTD as the primary organising variable is further strengthened by 
administrative considerations. A parcel-or holding-level tax that changes with 
restoration must rely on data that owners can influence through practical actions, that 
are observable by the authority, and that can be verified independently. Dipwells with 
loggers are robust and increasingly used in restoration monitoring, but depending on the 
density and accuracy needed (e.g. to avoid drift and inter-operator errors), may be too 
expensive to be feasible within the context of a tax. Costing assumptions suggest mean 
annual WTD would typically be derived from around 3–5 dipwells per 100 ha (average 4), 
with costs driven by both installation labour and the unit cost of materials and pressure 
sensors/data loggers. On that basis, indicative installation costs scale rapidly, as 
outlined in Appendix 4, Section 10.4.  

However, where continuous logging isn’t feasible, a minimum programme of installed 
dipwells with periodic readings, plus documented drain blocking/rewetting works and 
mapped drainage density, may still support auditable WTD-based estimates. Moreover, 
lower-cost approaches are currently being developed via Environment Agency funded 
research by the Centre for Ecology and Hydrology. It is estimated that current sensor 
costs of around £200 may be reduced to as little as £100 per unit via this work, 
compared to current sensor costs of over £500 (Chris Evans, pers. comm., 18 
December 2025). Where current commercial sensors cost £518, it is hoped that the 
outcome of this research will reduce the unit cost of sensors to £100- £200.  Assuming 
that other costs remain the same, a £418 saving per sensor would equate to more than 
£4 milllion saving on the cost of installing and equipping 250,000ha or more than £32 
million saving over the full peatland area of 1,952,000ha (compared to costings in 
section 10.4). Nevertheless, the cost of compliance of this approach, modest though it 
may be compared with other monitoring options, would represent a relatively high 
taxpayer burden compared with other UK and Scottish taxes.  The worthwhileness of 
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this expenditure to a taxpayer would depend on the amount of tax at stake. In addition, 
there are material central (non-landholder) costs implied by a WTD-linked system, 
including initial model development and calibration (costed elsewhere in the report as a 
multi-year research effort) and ongoing data integration/processing capacity, which 
would need to be resourced alongside field monitoring if the system is to remain 
auditable and consistent over time. 

 

6.4 Uncertainty management and verification pathways 
The evidence reviewed in this report shows that a number of important uncertainties 
would need to be quantified and accounted for, as WTD–flux functions vary among peat 
types and land uses, methane responses can be sensitive to vegetation, temperature 
and ebullition events, and short-term weather variations can mask or amplify 
management effects (e.g., Turetsky et al., 2014; Knox et al., 2019; Evans et al., 2021). 
There may be several options for managing these uncertainties. For example, liabilities 
could be based on rolling averages, so that weather noise is damped but lasting 
management effects still alter the average. This mirrors how bathing waters are 
classified, where SEPA uses four seasons of monitoring data to set the annual status for 
each site, updating the series each year (SEPA, n.d.; Marine Scotland, n.d.). Estimates 
of uncertainty would need to be reflected in any tax decision, for example by publishing 
confidence intervals, applying conservative adjustments where uncertainty is high, and 
setting clear appeal routes, with associated evidence requirements. This is consistent 
with the UK Emissions Trading Scheme, which requires formal uncertainty assessments 
and conservative substitute data where measurement uncertainty or gaps occur (UK 
ETS Authority, 2025; DESNZ, 2025). Where evidence supports action but retains 
material uncertainty (for example, the lower 95% bound of the rolling-mean emission 
estimate still exceeds a minimum threshold, or the mapped class probability is above 
the acceptance threshold), an uncertainty discount could be applied, so only the 
substantiated share is charged, with the same rule applied to claimed reductions (c.f. 
Heine et al., 2012).  

The evidence that has been reviewed suggests that remote sensing may be able to play 
a useful role in mapping peatland extent and broad changes in condition, based on 
vegetation and surface proxies, to prioritise the deployment of more expensive methods 
for detecting WTD change. Optical reflectance and solar-induced fluorescence track 
Gross Primary Productivity well, so they are informative for CO₂ uptake, especially in 
open bogs, fens and cutover sites (Kross et al., 2013; Dubois et al., 2018). Yet 
heterotrophic respiration and methane emissions are rarely approximated well by 
optical signals, particularly over seasons when WTD dynamics decouple plant stress 
from microbial processes (Junttila et al., 2021). InSAR provides measurements of peat 
surface motion which can indicate hydrological change and identify re-wetted areas, 
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but published links to annual carbon balance remain indirect. Moreover, InSAR signals 
are sensitive to sensor geometry, soil moisture and season, which complicates direct 
translation to annual carbon balance (Alshammari et al., 2020). In addition, the 
algorithms that are used to process InSAR data have not been independently tested in 
the UK, partly because many of them are proprietary. 

Logistical and cost constraints limit the number of sites, samples, and deployment of 
monitoring equipment within peatlands, reducing confidence in the representativeness 
of peatland condition.  A spatially balanced sampling framework (Kermorvant et al., 
2019; Mastrantonis et al., 2024), developed for peatland restoration assessment 
(Brennand, 2025), provides a practical method for targeting WTD measurements and 
designing calibration studies for WTD-flux response functions. Rather than deploying 
equipment randomly or opportunistically, the approach combines mapped peat extent, 
peat depth, slope and aspect, accessibility, surface condition indicators (e.g., JNCC 
vegetation functional groups and physical degradation indicators including bare peat), 
drainage and restoration intensity, bog pool proximity, and microtopography to identify 
representative plots across gradients of degradation, restoration state, and hydrological 
setting. 

Applied within a WTD-based tax or monitoring framework, this enables optimisation of 
WTD instrumentation in locations most likely to capture hydrologically and 
biogeochemically meaningful change, including areas influenced by drainage features, 
slope breaks, and restoration interventions. This could reduce the number of dipwells 
required while increasing confidence that measured WTD dynamics are relevant to 
emissions processes. 

The same framework supports calibration of Scottish WTD-flux response functions, 
enabling chamber or eddy-covariance measurements to be spatially representative of 
wider peatland units. Surface indicators already used in condition assessment (JNCC, 
2009) can be used to stratify calibration datasets, accounting for variation in vegetation, 
degradation state, and hydrological setting. 

Used alongside remote sensing, spatially balanced field sampling offers a transparent 
and auditable means of optimising the deployment of higher-cost measurements, 
supporting improved model calibration and more cost-effective verification within a 
WTD-linked land emissions tax. 

These limitations suggest that significant (and possibly costly) verification will be 
needed for extensive areas. To reduce the costs of verification, thresholds could be set, 
so that high-confidence areas are cleared by desk screening (an administrative check 
using maps, recent orthophotos, lidar/SAR layers and works records), medium-
confidence areas undergo review (a targeted analysis by technicians, comparing 
multiple sources, recent imagery and any local evidence, with follow-up queries as 
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needed), and  the low-confidence areas trigger water-table measurements for 
verification and further model improvement. For example, in these sites, landholders 
could install and maintain dipwells or piezometers to record water-table depth at a 
specified frequency, with quality assessment including sensor checks and 
georeferenced site photos. For holdings that contest default liabilities in high and 
medium confidence areas, landowners could opt-up to a higher-evidence route by 
documenting hydrological works (for example, drain blocking or bunding) and installing 
WTD sensors, enabling recalculation on a stronger evidential base. 

 

6.5 Initial rollout options and sequencing 
Given the potential cost of water-table-depth (WTD) measurements needed to verify 
remote-sensing outputs, an initial phase could focus only on bare and actively eroding 
peat. This would avoid upfront investment in WTD networks, target the largest source of 
peatland emissions, and rely on lower-cost visual verification (e.g., recent orthophotos 
or UAV surveys) to confirm status and change. Landowners seeking to challenge how 
their liabilities have been assessed could show mapped areas are not eroding or have 
been stabilised (e.g., using repeat UAV/LiDAR surveys showing reduced roughness and 
infilled haggs/gullies, and GNSS-mapped, dated works with photos). As method 
reliability improves, scope could be widened to drained or modified peat, using 
remotely sensed proxies with WTD measurements reserved for verification and appeals. 
Selective application of a tax does raise questions about the broad taxation principles 
of equity and fairness, which are central to the Scottish government’s general approach 
to taxation. 

If a WTD-based approach is preferred, a sequenced approach might start with a narrow 
scope, restricted to degraded blanket bog above agreed extent/depth thresholds and 
applying a two-part evidence rule based on: 1) a published national screen (peat 
extent/condition with confidence) to set a default liability; and 2) a minimal water-table 
dataset collected by the owner on included peat (installed dipwells or piezometers at a 
fixed density, periodic readings or low-cost logging, and basic quality assessment such 
as georeferenced photos and installation records). The default liability would then be 
charged unless the owner’s rolling-average WTD meets a stated threshold for wetter 
conditions, and where it does meet this threshold, liability could be reduced according 
to the published WTD–flux function. Field visits would only be triggered for low-
confidence map areas or where claimed adjustments are large. Richer evidence 
streams (dense WTD networks, detailed ditch mapping, InSAR or spectral modifiers), 
complex data fusion and routine site surveys would then be deferred to later phases of 
the tax roll-out. Again caution would be needed with an approach like this with regard to 
the wider tax principles of fairness and equity as between taxpayers and the type of 
peatland they own or occupy. 
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6.6 Baselines, definitions and implementation constraints 
When considering the feasibility of piloting a tax, whether based on visual or WTD-
based methods, a number of additional method limitations should be acknowledged. 
Current peat maps were developed for broad survey purposes rather than parcel-scale 
administration, which creates a non-trivial risk of omission and commission errors at 
holding scale. The 50 cm organic horizon threshold currently used to define peat in 
Scotland is high by global standards, and there are extensive areas where measured 
depths lie close to this cut-off. In such contexts, small errors in mapping or depth 
measurement could determine whether otherwise similar land parcels are taxed or not, 
with significant implications for perceived fairness and dispute risk. Any peat-based tax 
would therefore require a versioned national peat baseline with pixel-level uncertainty, 
clear and consistently applied peat definitions, and explicit rules for treating soils close 
to depth thresholds, including how uncertainty is reflected in liabilities and appeals. 

A practical approach to the question of peat depth definitions would be to adopt a 
single, published definition for tax purposes (for example, specifying an organic horizon 
thickness threshold and minimum organic carbon content) aligned as far as possible 
with the UK Inventory/Peatland Code and international conventions, but this would still 
raise material issues, including misclassification where depths cluster near the cut-off, 
inconsistency between map products and field measurements, incentives to contest or 
re-measure borderline soils, and the need to specify standardised field methods and 
error tolerances so that liability and appeals do not hinge on small differences in 
sampling location or technique. 

Mean water-table depth remains the most informative driver at policy scales, but 
accuracy at local scale depends on reliable in situ logging. Remote inference of water 
table appears strongest for wetter sites and is weaker on deeply drained ground. The 
use of InSAR to infer peat motion or hydrological status shows potential but currently 
requires site-level validation against independent ground observations before it can 
inform liability. These uncertainties imply material risks of over- and under-assessment 
where evidence quality is uneven, and they strengthen the case for conservative 
defaults, clear appeal routes, and phased adoption linked to validation results.  

Equity and feasibility constraints would also need to be considered. There are large 
tracts of unrestored peat in the Highlands and Islands, with fragmented ownership in 
shared hydrological units and a significant area of crofting common grazings. Heavy 
machinery access is limited in many places, coordination across boundaries is often 
required for re-wetting, and herbivore pressure can slow vegetation recovery. These 
factors imply that even with accurate measurement, charging rules would have to 
reflect realistic restoration timelines and constraints outside owners’ immediate 
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control. For example, exemptions or deferrals could be made for access-constrained 
sites. In addition to this, full land registration coverage has not yet been achieved, 
complicating the administration of any tax. 

 

6.7 Links to UK GHG inventory, Peatland Code and international 
comparators 

A tax linked to emission estimates derived from calibrated water-table–flux response 
functions would complement, not contradict, the UK’s GHG Inventory and the Peatland 
Code’s category-based emission factors for bogs and would align strongly with the 
Peatland Code’s approach to assessing emissions from fens. It would provide finer 
temporal and spatial resolution while remaining anchored in measured fluxes, the same 
empirical basis used for emissions factors used in the Inventory and Peatland Code. 
Making such data available through the tax system could, over time, help refine 
emissions factors used in the Inventory and Peatland Code. For Peatland Code projects, 
the same datasets (e.g., logger-based WTD time series, mapped drainage density with 
documented rewetting works, and remote indicators of condition change) could 
substantiate baseline survey work, show movement between condition categories 
(reducing the need for site visits by independent verification bodies), and strengthen 
risk and monitoring plans. As such, tax-derived evidence may lower transaction costs 
and further increase confidence in the additionality, permanence and quantification of 
units issued via the Peatland Code. 

While this alignment offers potential efficiencies, it remains important to recognise that 
comparable WTD-based systems in Europe have been developed primarily for 
monitoring and inventory purposes, and their transferability to a holding-level tax 
context in Scotland is not straightforward. Experience elsewhere in Europe appears to 
support a WTD-based approach to a future tax, however these countries are dominated 
by degraded agricultural peats compared to the diversity of semi-natural peatland 
habitats found in Scotland. Moreover, these systems have been developed primarily for 
the purposes of national monitoring, rather than a tax (although Denmark is proposing 
the use of this data in their proposed tax system), and may still lack the necessary 
spatial and temporal resolution needed. Germany’s grid-based Tier 3 methodology 
relates CO₂ and CH₄ to long-term mean annual WTD with response functions fitted to 
national chamber data (Tiemeyer et al., 2020). The Netherlands operates a parcel-scale 
Tier 3 methodology for coastal organic soils, with groundwater–decomposition 
modelling calibrated to an extensive flux network (although upland peat emissions are 
still calculated using emission factors) (Erkens et al., 2022).  Denmark has developed 
national WTD mapping with Danish-data response functions and uses the framework to 
compare restoration scenarios (Koch et al., 2023). Although it remains to be seen how 
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this data will be used in the context of Denmark’s proposed tax on carbon rich soils, 
there is evidence from ongoing qualitative research from RESAS’s  JHI-D5.3 Galvanising 
Change via Natural Capital project, that the threat of the proposed tax is already 
motivating some landowners to sell their land to the state (which is then retiring the 
land from agriculture and restoring the peat). 

 

6.8 Conclusion 

Ultimately, selection between the options outlined in this appendix needs to balance 
messaging to the land management community (given evidence that proposals to 
introduce a similar tax in Denmark are already influencing decisions to sell peatlands to 
avoid future liabilities) with the risks of piloting a tax using methods that are known to 
have significant limitations, potentially undermining the legitimacy of a future tax. In 
addition to the research outlined in Section 5 to refine the methodological evidence 
base, future work could evaluate tax design options, to ensure equity across diverse 
tenure systems (e.g., including the specific liabilities of crofters and tenants, 
community and NGO landowners etc), while resolving practical and legal complexities 
related to administrative enforceability, dispute resolution, and the potential feasibility 
of integrating peatlands into the UK Emissions Trading Scheme instead of a standalone 
tax. While peatlands are not currently included within the UK ETS because restoration is 
treated under existing accounting rules as an emissions reduction rather than a 
greenhouse gas removal, there is ongoing discussion across the UK ETS Authority and 
devolved administrations the opportunity for peatland restoration as an active 
abatement of a large, ongoing emissions source, that could become a credible future 
ETS option as evidence, accounting approaches and governance frameworks mature. 
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Appendix 2: Overview of implementation challenges  

7.1 Overview of implementation challenges 
The practical implementation of a carbon land tax depends on resolving a set of 
measurement and administrative challenges that determine whether emissions can be 
quantified accurately, attributed fairly, and managed efficiently: 

• Measurement accuracy and validity: Methods must reflect net emissions from 
peat relative to direct flux measurements, with accuracies proportional to the 
greenhouse gases of concern (CO₂ and CH₄ at typical magnitudes). Current 
inventory approaches provide averaged emission factors for broad peat 
categories, limiting precision and the ability to attribute emissions to individual 
holdings. Developing proxy-based methods that approximate true fluxes within 
defensible margins of error will therefore be central to the tax’s credibility. 
Measurement uncertainty remains a primary constraint, and transparent 
reporting of error margins and model assumptions is essential. 

• Spatial and temporal resolution: Sufficient spatial resolution is required to 
allocate emissions reliably to specific landholdings, accounting for the fine-
scale variability in peat condition, hydrology, and vegetation. Emissions also vary 
through time with weather and management interventions; hence, 
measurements must be frequent enough, ideally at least every three years, to 
detect meaningful change. Capturing this variability at acceptable cost will 
depend on proxy variables measurable by both remote and ground-based 
means, ensuring that change in management practices and restoration 
outcomes can be reflected in updated tax assessments. 

• Equity, access, and behavioural responsiveness: Landowners must be able to 
influence the proxy variables through management decisions so that the tax can 
encourage practices that reduce emissions and discourage damaging activity. 
However, the system must operate equitably across Scotland’s diverse tenure 
systems, including crofts, common grazings, and large estates, without 
disadvantaging those lacking technical capacity or access to measurement 
tools, or in occupation of land which is naturally harder to access and monitor. 
Cost-effectiveness and implementability by land managers are essential design 
considerations to avoid excluding smaller or resource-constrained participants. 

• Transparency, compliance, and dispute resolution: The tax mechanism must be 
transparent in its data sources, modelling assumptions, and procedures, 
allowing independent verification and audit. Taxpayers require a clear route to 
contest or appeal assessments based on reproducible evidence, and ultimately 
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such contest must be capable of accurate determination by a third party. These 
measures are vital for public legitimacy, administrative efficiency, and 
procedural fairness. 

As such, the feasibility of the tax therefore rests on whether a scientifically robust, 
replicable and transparent means can be developed to estimate greenhouse-gas fluxes 
from peat at parcel scale, at a reasonable cost in relation to the revenue raised or other 
public objectives achieved. Direct flux measurements, such as chamber and eddy-
covariance methods, provide reference-quality data but are costly and logistically 
demanding for large-scale use (Aubinet, Vesala and Papale, 2012; Baldocchi, 2020). For 
this reason, proxy variables are widely used to approximate emissions at larger spatial 
and temporal scales through empirical or physical inference. Hydrological state is 
particularly important: shallower water tables are consistently associated with lower 
net warming effects (Evans et al., 2021). Proxy variables themselves can be measured in 
several ways, divided in this report into “remotely sensed” (e.g. satellites or Unmanned 
Aerial Vehicles UAVs) and “ground-based” (e.g. dipwells) measurements. 

Due to their large scale, remote measurements lend themselves to tax systems where 
all tax liabilities are determined by the tax authority. Ground-based measurements lend 
themselves to “self-assessment” style tax systems, where landowners are responsible 
for measuring the proxy variables on their land, from which their emissions and tax 
liability can then be determined by the tax authority. The potential land tax is at an early 
stage and the tax system is not fixed; therefore, both remotely-sensed and ground-
based measurements are assessed in this report, and recommendations on 
appropriate tax systems are given. 

Many models exist to predict GHG emissions from proxy variables, but their accuracy 
depends on both the reliability of the measurement of input variables and the strength 
of their relationship to actual emissions. This rapid evidence synthesis therefore 
prioritises assessing how well the variables approximate GHG emissions compared to 
direct measurements, and how these variables can be measured, either remotely or on 
the ground. Systematically assessing models for determining peat emissions from the 
proxy variables may be prioritised in future research. For example, this report will 
examine how well water-table depth predicts GHG emissions compared with flux tower 
measurements, as well as how accurately water-table depth itself can be measured. It 
will not, however, assess which modelling approach best predicts GHG emissions from 
water table depth. 
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7.2 Issues with using Tier 2 methods from the UK’s GHG inventory 
and Peatland Code as the basis for a tax 

The UK’s national GHG inventory currently provides the most comprehensive means of 
estimating emissions from peatlands at national scales. However, as a national 
reporting methodology, though scientifically robust for reporting purposes, it cannot 
resolve emissions with the spatial precision or temporal frequency required for taxation. 
IPCC reporting for the Paris Agreement is designed to represent long-term averages that 
are insensitive to year-to-year weather variation, ensuring reported anthropogenic 
emissions reflect management change rather than climatic fluctuation (Eggleston et al., 
2006). This distinction is especially important in the LULUCF sector, where peat CO₂ 
respiration can vary by around ±100 per cent from the long-term mean over a five-year 
period (Wilson et al., 2016). Understanding the GHG inventory’s structure and 
limitations helps to identify where methodological advances are needed to underpin a 
fair and technically credible carbon land tax. 

The Tier 2 approach used to determine national yearly GHG emissions from peat 
improves upon the default IPCC guidelines in the UK context (Hiraishi et al., 2014; 
Evans, C. et al., 2017). Evans, C. et al. (2017) updated emissions factors for UK-relevant 
peat emission categories in the IPCC drained land-use categories set out in the 2013 
Wetlands Supplement (Hiraishi et al., 2014). The IPCC organic-soil categories 
‘grassland’ and ‘extraction site’ categories were disaggregated into drained and 
undrained areas, while ‘heather-dominated’ and ‘grass-dominated’ modified bogs were 
merged into a single ‘modified bog’ category. The approach also differentiates between 
near-natural and re-wetted bogs, improving on IPCC guidance. 

Scientific evidence was collated to derive emissions factors per category, resulting in 
new UK-specific factors for all categories except CO₂ from fluvial export of dissolved 
organic carbon (DOC) and particulate organic carbon (POC), CH₄ from drainage ditches, 
and indirect N₂O emissions from downstream waters. Peat extent is currently defined 
using the 1:250,000 National Soil Map of Scotland (full coverage) and the 1:25,000  Soils 
of Scotland map (James Hutton Institute, partial coverage) in combination with the 
1:50,000 British Geological Survey Geological Map of Britain, applying a slope threshold 
to downscale mixed land parcels in mountainous areas. This method achieved a true 
positive rate (‘recall’) of 0.68 and a true negative rate (‘specificity’) of 0.84 when 
validated against the National Soils Inventory of Scotland. Baseline (1990) peat 
emission categories are defined using the Land Cover Map for Scotland 1988 (LCS88) 
based on aerial photographs at 1:25,000 scale. LCS88 dominant categories were 
mapped to peat emission classes, though some distinctions could not be made due to 
limitations in source data. Yearly net emissions are obtained by multiplying the area of 
each peat category by its emissions factor. 
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Emissions factors were updated in Evans et al., (2023) using new eddy covariance and 
chamber evidence. Changes in activity data, that is, changes in peat emission 
categories, are tracked through area accounting rather than mapped change detection, 
incorporating data on restoration activity (only those funded/supported by Peatland 
ACTION), afforestation and felling (from Forestry Commission records), cropland and 
grassland conversions (from land-cover data), and extraction areas (from licences and 
satellite imagery). 

The current inventory has limitations for direct use in taxation, primarily due to 
unavoidable uncertainties in classifying peat extent and condition categories. If peat-
extent classification uncertainties (recall and specificity) persist at rates reported in 
Evans et al. (2017) across Scotland, 32 per cent of peatland would remain untaxed and 
16 per cent of non-peatland could be incorrectly taxed. Further uncertainty arises from 
peat condition classification, for which error has not yet been fully quantified.  

The Peatland Code takes a related but more operational approach to quantifying 
avoided or reduced emissions. For bogs, it also uses emissions factors, directly aligned 
to the Tier 2 inventory, and applies them to condition categories that represent discrete 
ecological states. These categories, used in both the Peatland Code and UK GHG 
Inventory include ‘actively eroding’, ‘drained’, ‘modified’, and ‘restored’ states. The 
Peatland Code uses the difference in emission factors between these condition 
categories to estimate emission reductions from restoration activity, rather than 
attempting to model fluxes directly. This reduces the costs of monitoring at each site 
and makes the scheme operational. Each project is assigned baseline and post-
restoration condition classes using field survey data and remote-sensing evidence, 
which is checked by independent third-party assessors, and the area within each 
condition category is then multiplied by the corresponding emissions factors to 
calculate net emission reductions. This discrete-category approach aligns conceptually 
with the national inventory but serves a different purpose. It prioritises verifiability at site 
scale and permanence over comprehensive spatial coverage, and updates emission 
factors periodically to reflect new evidence from flux-tower and chamber studies. 
However, like the Tier 2 approach, it is limited by the accuracy of condition classification 
and the assumption that all areas within a category share a uniform emissions factor, 
wherever they are located in the UK. This is acceptable for the Peatland Code and the 
UK inventory because applying a category mean across the national area is intended to 
balance over- and underestimation at aggregate scale. For taxation, the same averaging 
creates problems at site scale. Parcels in the same condition category can have 
materially different emissions depending on hydrology, vegetation and climate, so 
liabilities tied only to categories will not move with management until a reclassification 
threshold is crossed. In many cases reclassification may take years, during which 
landholders who have invested in effective re-wetting would face unchanged liabilities 
despite real reductions in emissions that are not yet reflected in a category change. It 
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might also be observed that participation in the Peatland Code is voluntary whereas the 
payment of a tax is mandatory.  A tax liability must therefore be based on a higher 
threshold of liability assessment.   

Due to the lack of Tier 2 emissions factors in the UK GHG inventory the Peatland Code 
takes a different approach for fens. Here projects must measure their water table depth 
pre restoration and throughout the whole project lifetime. The average annual water 
table depth is then used in combination with the condition category to model the 
emissions, and from the difference in emissions pre and post restoration the emissions 
reductions are calculated. 

 

7.3 Other Countries’ National Inventory Approaches  
Approaches used in Germany, Denmark and the Netherlands focus on the variables 
driving emissions. Germany reports emissions from organic soils with a spatial Tier 3 
method that relates CO₂ and CH₄ to long-term mean annual water-table depth using 
response functions fitted to national chamber measurements, implemented on a 
national grid and compiled for UNFCCC submission (Bärbel Tiemeyer et al., 2020; 
German Environment Agency, 2025). High-resolution maps of land use, organic soil type 
and WTD underpin country-specific response functions for CO₂ and CH₄, derived from a 
large chamber dataset and implemented in the national inventory (Bärbel Tiemeyer et 
al., 2020; Fuß et al., 2025; German Environment Agency, 2025). Although a constant (in 
time) map for mean annual WTD is used in the German inventory to align with IPCC 
reporting principles, the framework allows for the use of time-resolved WTD data to 
better capture the effects of re-wetting on emissions (German Environment Agency, 
2025). This aligns well with data available from ongoing restoration monitoring and 
provides a potentially auditable signal for tax liability adjustments as water levels are 
raised.  

Denmark has developed methods based on national WTD mapping and water-table-
emission response functions fitted to Danish flux data, which are then used to estimate 
emissions and compare restoration scenarios (Koch et al., 2023; Nielsen et al., 2025). 
This has included the development of a high-resolution WTD map for Danish peat soils, 
non-linear CO₂ and CH₄ response functions with strongest sensitivity in the upper 0–0.5 
m, and uncertainty analysis to test rewetted versus drained cases (Koch et al., 2023) 
consistent with parallel national mapping efforts to update peat and organic-soil extent 
used in inventory workflows (Gyldenk et al., 2023). In the proposed tax context, 
agricultural peat soils are generally assumed to be drained (and therefore high-emitting) 
where a field is classified as peat (commonly defined in Denmark as >6% C), with the 
highest CO₂ emissions associated with groundwater depths beyond c. 40 cm, 
consistent with Tiemeyer et al. and confirmed in Danish analyses; where peat is shallow 
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(e.g. <40 cm), emissions may be treated as lower (for example, around half). The 
temporal aspect is not generally modelled directly unless land is taken out of 
agriculture, with liability instead linked to land status (e.g. continued agricultural use 
versus rewetting). Denmark’s approach aligns technical inventory practice with a 
planned future carbon emissions land tax on non-energy agricultural emissions using 
uniform CO₂-equivalent pricing (which explicitly notes emissions from carbon-rich 
agricultural soils; Expert Group 2024). However, proposed peat-soil tax rates are 
substantially lower than those faced by ETS-covered industry, and the practical 
incidence of tax depends strongly on peat classification: if a field is mapped as peat but 
is actually mineral soil, the owner/user could be overcharged, reinforcing that the 
performance of the peat map is central to both fairness and dispute risk. As a 
consequence, work is underway on a sensor-based appeal system if earlier peat maps 
are used as the basis for taxation, and additional work has been proposed (not yet 
adopted) on improved high-resolution peat mapping (including approaches using 
drone-borne TEM and gamma sensors). Farmers may avoid the tax by entering an 
agreement to rewet land (with compensation), and may also sell land to government or 
receive replacement land. Taxation is planned to start on 1/1/2028, but it has not yet 
been decided whether the landowner or the user should be liable for the tax (pers. 
comm. Mogens Humlekrog Greve, 2 December, 2025).  

The Netherlands splits organic soils into coastal peatlands, which cover about 72% of 
the organic soil area, and uplands. Coastal peatlands use a Tier 3, parcel-level 
ensemble (Erkens et al., 2022) that couples a groundwater model (PP2D) with a carbon 
decomposition model (AAP), calibrated against the Netherlands Research Programme 
on Greenhouse Gas Dynamics in Peatlands and Organic Soils (NOBV) flux network 
(NOBV, 2019, 2023), with outputs used to derive emissions factors, which are used in 
GHG reporting (Schelhaas et al., 2024; Baren et al., 2025). Upland peatlands retain a 
Tier 2 method in which both methane and carbon dioxide emissions are derived from 
emissions factors (Baren et al., 2025). However, it is worth noting that emissions factors 
for carbon dioxide were developed using measured or inferred ground-surface 
movements linked to ditch water level or mean lowest groundwater level, which could 
form the basis for future Tier 3 methods that could, similar to the SOMERS parcel 
outputs, provide hydrology-responsive CO₂ estimates at scales relevant to changes in 
land management.  

In summary, the UK Tier 2 assigns fixed factors to categories such as near-natural, 
modified, drained and rewetted bogs, and tracks change mainly through area updates. 
In contrast, Germany and Denmark relate fluxes to WTD and the Netherlands links 
carbon dioxide emissions to subsidence in intensively drained peat, which may be 
altered via changes in management and are therefore easier to be adapted to the basis 
of a carbon tax. Continuous driver-based methods are more sensitive to management 
at parcel scale and better capture restoration effects between discrete category 
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thresholds, which is relevant for a tax intended to reduce liabilities as water levels 
recover. The adoption of water-table-driven estimation for organic soils within the UK’s 
inventory framework could align any liability calculation with inventory methods and 
update cycles used for reporting to UNFCCC, so that verified rewetting reduces 
assessed emissions and tax in step with inventory evidence. 

 

7.4 Financing restoration 
Consideration must also be given to the means available to landowners to finance 
restoration.  The cost of restoration varies from site to site however is typically upwards 
of a thousand pounds per ha., meaning that for larger sites the total cost may run into 
hundreds of thousands of pounds (Glenk et al., 2022). Current financing options 
include capital investment grants available through the Peatland Action program and 
carbon finance utilising carbon credits awarded by the Peatland Code.   

The introduction of a land carbon tax may complicate this funding environment by 
prompting a need to consider Peatland Code additionality.  Additionality is a key 
concept underpinning the integrity of carbon finance, yet operational rules applied to 
determine additionality differ between codes.  Recognising that the aim of introducing a 
tax would be to create an incentive toward restoration, it would be appropriate for this 
incentive to be accounted for in assessment of whether the anticipated emissions 
reduction is additional to the baseline trend.  The current additionality rules within the 
Peatland Code utilise a carbon finance test which would not account for this incentive – 
as it relates more narrowly to the proportion of funding from carbon finance as 
compared to other sources.  Were a tax to be implemented, it may be necessary 
however for the Peatland Code to reconsider this arrangement and potentially provide 
further justification of additionality.  Were additionality to instead be assessed on the 
basis an investment test, as is currently the case for Woodland Carbon Code and 
international standards such as Verra and Gold Standard, it is likely that many projects 
would fail to pass and not be eligible for carbon credits, due to the fact that there would 
already be a strong incentive in place for landowners to engage in peatland 
restoration.  Additional modelling would however be required in order to understand this 
outcome since without appropriate financing in place, from carbon finance or other 
sources, landowners may not be able to bear the cost of peatland restoration.    

It might also be added that in its broadest sense, additionality requires that where an 
obligation has arisen then no further financial support (private or public) should be 
available.  This would raise the further complication of the categorisation of a tax in 
terms of additionality.  On the one hand as a measure to force land managers to restore 
land, the general principle of additionality may be offended; on the other hand as 
merely a financial obligation that can be avoided by management measures, 
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additionality may not be regarded as an issue at all beyond the requirements of any 
financial tests in place. 

 

7.5 Peat mapping baselines for tax administration 
England’s new Peat Map (Natural England, 2025) is a useful benchmark for improving 
Scotland’s peat extent and condition baselines, but it also illustrates limits of national-
scale modelling for regulatory use. The Natural England report documents a modelling 
stack that combines field surveys with satellite, LiDAR and ancillary predictors to map 
peaty-soil extent, depth, vegetation and upland erosion features, with published 
accuracy and confidence layers. Reported validation for peaty-soil extent is high and 
vegetation mapping is accurate overall, but agreement varies by vegetation class. The 
validated map outputs (specifically the peat-extent and vegetation-class rasters, 
together with their confidence layers) can provide an auditable screening baseline to 
identify where peat is likely, prioritise survey effort and plan restoration. Because some 
vegetation classes are harder to distinguish, such outputs should only be used to guide 
screening and targeting rather than determining liability without local verification.  

The map reported high accuracy metrics but making it clear that not all predictions 
would be correct. This led to multiple public critiques, suggesting systematic 
misclassification by the England Peat Map, including predictions of peat on rocky 
outcrops, stone features and woodland, alongside omissions where peat is known 
locally (Envirotech Online, 2025; NFU, 2025; The Times, 2025). However, public 
reporting of misclassifications likely focused on places where the map was incorrect 
but it not clear if there is indeed systematic bias in the model. Likely causes, based on 
limitations identified by Natural England (2025) and well-documented constraints of 
optical and LiDAR peatland mapping  (Kuhn et al., 2024; Honkavaara et al., 2023; Bonn 
et al., 2024), include class confusion between peaty and mineral soils, mixed pixels at 
10–30 m, seasonal/phenological effects on optical signals, LiDAR artefacts on steep or 
rocky ground, noisy historic labels, and threshold choices that trade sensitivity for 
precision. 

In parallel with Natural England’s national modelling, Scotland-specific work led by the 
James Hutton Institute (JHI) is building a routinely refreshed peatland condition 
baseline using high-resolution imagery and machine-learning, intended for regular 
updating as new data arrive. It integrates recent satellite/UAV imagery, training data 
from field campaigns, and classifier ensembles to map condition states, with an explicit 
goal of supporting restoration planning and policy use at operational scales (The James 
Hutton Institute, 2024). However so far, there has only been one static mapping effort. A 
complementary JHI programme focuses on drainage and erosion features that drive 
emissions and restoration costs, using deep-learning models to detect grips, gullies 
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and other surface indicators across Scotland at finer spatial resolution than legacy 100 
m products. The team has released an open dataset and describes the rationale as 
enabling more precise inventory inputs and restoration targeting where surface 
variability is much finer than national soil maps capture (The James Hutton Institute, 
2025b, 2025a). Recent JHI–National Library of Scotland work also mines historic 
Ordnance Survey maps with AI to identify “missing” Moorland, rough grassland, and 
peatland signatures, strengthening training/validation in areas where modern labels are 
sparse and helping reconcile discrepancies between historic and current condition 
signals (The James Hutton Institute, 2025b)  

Both the JHI approach and Natural England’s England Peat Map aim to provide national, 
evidence-based screening layers for peatland extent, condition and surface features. 
Natural England’s approach focusses on providing national layers for each variable, 
with clear user guidance and data governance, whereas JHI’s approach puts more 
weight on frequently refreshed, higher-resolution detection of condition drivers such as 
drainage and erosion. Future development of the JHI map might usefully provide 
versioned releases with clear product definitions, confidence rasters and plain user 
guidance. Versioning would record what changed, when and why, so estimates used for 
tax can be traced and reproduced. Unambiguous product definitions would prevent 
disputes about what each layer represents and how it should be used. Pixel-level 
confidence rasters would allow tax authorities to treat high-confidence pixels as 
adequate for desk decisions, flag medium-confidence areas for targeted review, and 
mandate field checks where confidence falls below a stated threshold. User guidance 
should define those thresholds, specify appropriate use at parcel and holding scales, 
and list the evidence required to challenge or correct a classification. Together these 
measures would reduce ambiguity, support independent audit and simplify 
maintenance as methods and data are updated. 
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Appendix 3: Review methodology  
 

8.1 Direct measurements 
Chamber methods 

Peat chambers have been used to measure emissions from soils for over 100 years 
(Pavelka et al., 2018). The aim is to cover a defined area of ground with a PVC chamber, 
allowing for the exchange of gases between the soil and chamber headspace.  
Measuring the change in concentration of gas over time then allows an estimate of the 
net flux of gases between soil and atmosphere (Pihlatie et al., 2013).  Peat chambers 
are commonly used to measure CO2, CH4, N2O, however the optimal chamber design 
and sampling strategy depends on the particular GHG gas targeted by study (Pihlatie et 
al., 2013). 

A key difference in measurement technique is the choice of static (manual) versus 
dynamic (automated) system.  Within static chamber systems gas is manually sampled 
by syringe and then transported from site for analysis by gas chromatograph.  
Automated chamber systems meanwhile use an in- situ gas analyser to measure gas 
concentration allowing for multiple repeated measurements. Automated systems need 
power supplies and are limited by the number of chambers versus the length of supply 
lines to and from the analyser while static chambers require frequent visits to the site.  
Greater frequency of measurement may better capture daily and seasonal dynamics in 
GHG cycles, however dynamic systems may not always be optimal and among 
measurement of peatland emissions, static systems continue to be most common 
(Boonman et al., 2024).  Dynamic systems have been most commonly applied to 
measuring CO2, since (typically) larger fluxes place less reliance on the sensitivity of the 
gas analyser and enable shorter enclosure intervals, while static systems are 
commonly used for measuring N2O or CH4 (Pihlatie et al., 2013).  However, the 
development of faster gas analysers has enabled automatic systems to be used to 
estimate CH4 and N2O. 

Whichever system is used, to provide an accurate estimate of annual emissions it 
would be necessary to ensure that sampling accounted for variation in conditions 
across site and was conducted throughout the year to capture seasonal changes in 
emissions.  Since this may entail hundreds if not thousands of individual chamber 
samples per site each year, peat chambers do not offer a practical means of 
nationwide monitoring to support a land carbon tax.  

Various factors have been identified in the literature as influencing the accuracy of 
estimated fluxes, and to reduce bias it is important to (Juszczak, 2013): 
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• use a fan to prevent stratification within the chamber 
• allow for pressure compensation between chamber and outer atmosphere  
• ensure chamber is properly sealed 
• review chamber readings and address outliers which may reflect to mistakes of 

person conducting experiment (static chambers), improper closure of chambers 
(automatic), or result from chamber artefacts such as condensation 

• rotate plot locations to reduce impact of chamber deployment on vegetation 
due to rain shadow (Boonman et al., 2024) 

• avoid measurement on windy days (Yao et al., 2017) 
• ensure appropriate application of linear/ exponential estimation technique. 

 

Eddy Covariance 

The Eddy Covariance (EC) method for measuring atmospheric fluxes of gasses uses a 3-
dimensional wind speed detector (3D sonic anemometer) and an analytic method for 
measuring gas concentrations attached to tower to measure gas fluxes at the 
landscape scale. The measurements assume that the majority of gas transport to and 
from the atmosphere is via eddies (swirling parcels of air). By measuring the changes 
(covariance) in the upward/downward velocity of air with the concentration of gasses 
they can estimate gas, heat and vapour fluxes. In practice, EC tower alignment and data 
go through quality control because the method relies on several assumptions about the 
atmosphere, the landscape and tower height. When these assumptions break due to 
sudden weather changes, uneven terrain, low eddy activity, or winds coming from the 
wrong direction the measurements become less reliable. The tower height and location 
are selected to ensure that the measurements represent the ecosystem and above the 
messy airflow zone so that the air is well mixed and representative of the landscape 
rather than one small parcel of land. Additionally, quality control filtering identifies and 
removes periods of weather changes or when the wind is coming from the wrong 
direction so the final fluxes represent ecosystem behaviour. The literature generally find 
high correlations (R2=0.86) with chamber measurements, even when footprint size and 
wind direction are not accounted for (Laine et al., 2006). However, differences between 
chamber and EC measurements are expected, and interpreting these discrepancies 
requires specialist expertise. 

The challenge in using EC as the basis for a carbon tax is achieving enough spatial 
coverage of peatlands while still meeting the strict quality-control requirements 
described above. To meet the tax-criteria, all emissions from peatlands owned by a 
landowner must be measured, and only emissions originating from peat under their 
ownership should be attributed to that landowner. Therefore, flux tower networks will 
have to be placed in coordination with ownership boundaries and the above factors to 
meet these two requirements resulting in hundreds or possibly thousands of towers 
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(authors’ interpretation based on complex geometry of ownership boundaries and 
Scotland’s terrain). Furthermore, since all peat emissions should be measured, it will be 
hard to differentiate between peat and other GHG sources for peatland near roads, 
houses, agriculture or other GHG sources. 

 

8.2 Methods Background and Search terms 
Selection of proxy measurements  

Proxy measurements were selected based on discussions with the Scottish 
Government and the funder. The search strings were broadened to include the variables 
that proxy measurements observe (called “proxy variables”). For example, InSAR (proxy 
measurement) measure temporal- and spatial- changes in surface elevation (proxy 
variable). Including proxy variables in the search string broadened the evidence review 
to include papers which used ground-based measurements as well as remote sensing 
techniques. 

Peat Greenhouse Gas Emissions terms and definitions 

Individual search strings were developed for each proxy measurement. However, they 
all shared common terms (Error! Reference source not found.) designed to capture 
studies which directly measured peat GHG emissions and compared them to another 
prospective measurement.   

The vocabulary of peat emissions literature often uses jargon which we list here and use 
consistently throughout the report: 

• Gross Primary Productivity (GPP): The total amount of carbon fixed by 
photosynthesis. 

• Net Primary Productivity (NPP): The amount of carbon that remains in plants 
after what they use for their own respiration. NPP=GPP-Ra, where Ra is the rate of 
plant respiration. 

• Gross Ecosystem Exchange (GEE): Measured total CO2 uptake. Should be the 
same as GPP but is used when measuring carbon fluxes at the eco-system scale, 
e.g. with EC towers. 

• Net Ecosystem Exchange (NEE): The net CO2 flux between the ecosystem and 
the atmosphere accounting for respirations by autotrophs (plants) and 
heterotrophs (animals and microbes). NEE = Reco – GPP, where Reco = Ra+Rh and Rh 
is heterotrophic respiration. When NEE is negative, the ecosystem is a CO2 sink, 
if its positive it’s a CO2 source. Net Ecosystem Productivity (NEP) is the negative 
of NEE while accounting for system offtake by animals etc. 

• Net Ecosystem Carbon Balance (NECB): Balance of carbon in all its forms 
entering and leaving an ecosystem. NECB=-NEE-CH4flux-DOC-VOCloss-Offtake 
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where CH4flux is the methane leaving the system, DOC is the dissolved organic 
carbon leaving the system, VOCloss is loss of carbon as volatile compounds and 
Offtake is the carbon that is physically removed from an ecosystem by humans 
or animals. When NECB is positive the ecosystem is a carbon sink. 

 

The peat GHG balance used this report can be expressed as  

𝐺𝐻𝐺 = (𝑅𝑎 + 𝑅ℎ − 𝐺𝑃𝑃) 

          +𝐶𝐻4
𝐹𝑙𝑢𝑥 × 𝐺𝑊𝑃𝐶𝐻4 

          +𝑁2𝑂𝐹𝑙𝑢𝑥𝐺𝑊𝑃𝑁2𝑂 

          + (𝐷𝑂𝐶 + 𝑉𝑂𝐶) × 𝑝𝐶𝐻4
𝐺𝑊𝑃𝐶𝐻4 + (𝐷𝑂𝐶 + 𝑉𝑂𝐶) × 𝑝𝐶𝑂2 

where 𝑅𝑎  and  𝑅ℎ [kgCO2] are autotrophic and heterotrophic respiration respectively,  
𝐺𝑃𝑃 [kgCO2] is the Gross Primary Productivity, 𝐶𝐻4

𝐹𝑙𝑢𝑥 [kgCH4] is the net methane flux 
into the atmosphere, 𝑁2𝑂𝐹𝑙𝑢𝑥  [kgN2O] is the next flux of nitrous oxide into atmosphere,  
𝐷𝑂𝐶 and 𝑉𝑂𝐶  [kgC] is carbon lost as dissolved and volatised organic matter 
respectively -𝑝𝐶𝐻4  [kgCH4 kg-1C] and 𝑝𝐶𝑂2

  [kgCO2 kg-1C] are the proportions of that lost 
carbon which is converted to methane and CO2 respectively3 and  𝐺𝑊𝑃𝐶𝐻4

 and 
𝐺𝑊𝑃𝑁2𝑂  are the global warming potentials of methane and nitrous oxide respectively. 
The first line represents the (NEE), the second the methane balance, third the nitrous 
oxide balance and fourth the carbon loss downstream. These terms will be used in the 
summary of findings Table 2. 

Table 23: Search terms shared amongst all proxy methods/measurements assessed. 

Greenhouse gas exchange 
Greenhouse gas 
language 

“CH4 emission*” OR “CO2 emission*” OR “N2O emission*” OR 
“CH4 flux*” OR “CO2 flux*” OR “N2O flux*” OR “CH4 exchange*” 
OR “CO2 exchange*” OR “N2O exchange*” OR "methane" OR 
"carbon dioxide" OR "nitrous oxide" OR “GHG” OR "carbon flux*" 
OR “carbon exchange” 

Ecosystem 
exchange 
language 

“Net ecosystem carbon balance” OR “Net ecosystem exchange” 
OR “Net ecosystem production” OR "carbon balance" OR 
"carbon exchange" OR "ecosystem respiration" OR "soil 
respiration" OR "net primary production" OR “ecosystem carbon 
exchange” OR “Carbon uptake” OR “Carbon sequestration” OR 

(AND) Peatland 
 “Peatland” OR “peat” OR “organo-mineral” OR “mire*” OR “fen*” 

OR “bog*” OR “wetland*” 
(AND) Direct measurement mode 

Flux tower “Eddy covariance” OR “Flux Tower” OR “Flux-tower” OR “Tall 
tower” OR “Tall-tower” OR 

 
3 These should be different for VOC and DOC respectively. 
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Chamber Method “Chamber* system” OR “static chamber*” OR “dynamic 
chamber*” OR “automated chamber*” OR "closed chamber*" 
OR "open chamber*" OR "automatic chamber*" OR "manual 

chamber*" 
(AND) Evaluation criteria 

Comparative 
accuracy 

“Accuracy” OR “estimation” OR “*error” OR “measurement” OR 
“R-squared” OR “R squared” OR “Cost” OR “price” OR 

“expenditure” OR "uncertainty" OR "bias" OR "precision" OR 
"validation" OR "calibration" OR "agreement" OR "comparison" 

OR "evaluation" OR 
Cost 

effectiveness 
“Cost” OR “price” OR “expenditure” OR “viability” OR 

“feasibility” 
  

8.3 Proxy Variables and Measurements 

8.3.1 Water-table depth 

The position of the water table is an important control on biophysical processes in 
peatland ecosystems. Waterlogged conditions limit soil oxygen availability.  Water and 
oxygen availability together control plant and bacterial activity, which in turn affect CO2 
and CH4 emissions. 

Soil oxygen availability determines the pathways through which microbes can break 
down organic matter.  Within waterlogged soils, a scarcity of oxygen and other electron 
acceptors means that microbes must commonly resort to less efficient methanogenic 
pathways, slowing the decomposition of organic matter (Bridgham et al., 2013).  
Through this, sustained waterlogged conditions lead to long term accumulation of 
organic matter as peat.  When the water table lowers, this creates more favourable 
conditions for microbes to break down organic matter in the soil, increasing CO2 
emissions to the atmosphere from bacterial respiration.  However, since wetter 
conditions favour a shift to methanogenic pathways, a sustained increase in the water-
table (i.e. shallower water table), tends to lead to an increase in methane emissions 
(while CO2 emissions decrease) (Günther et al., 2020a).   

The availability of water and oxygen in soil also controls plant activity.  Water is required 
in photosynthesis and therefore the water table influences plant growth and the level of 
CO2 that is fixed by plants growing on peatlands.  Meanwhile plant respiration is further 
limited by the availability of oxygen in soil and therefore the level of CO2 emitted due to 
plant respiration is also indirectly controlled by the position of the water table.  

The change in Net- Ecosystem Carbon Balance – that is, the change in CO2 equivalent 
emissions – depends on the relative magnitude of changes in CO2 and CH4 emissions.  
While  peatlands are normally found to be small net sinks, studies indicate that 
rewetting of drained/modified peatlands may result in a spike in methane production 
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(Kandel, Elsgaard and Laerke, 2017; Schaller, Hofer and Klemm, 2022; Antonijevic et al., 
2023; Kalhori et al., 2024; Delwiche et al., 2025).  Over the short run, elevated methane 
emissions may be sufficient to cause a net increase in total GHG emissions (Kandel et 
al., 2020), before emissions decline over the long run and the peatland becomes a net 
sink (Günther et al., 2020b).  It is, however, important to note that peatland restoration 
results in net GHG reductions of considerable magnitude by preventing losses of 
carbon from ongoing degradation in drained peatlands. 

 

Modes of measuring water table depth  

Water table may be measured using a dipwell (PVC lined perforated pipe) inserted into 
the ground, either manually using a dip meter, or continuously using a pressure 
transducer connected to a data logger. In the case of the latter, the pressure reading has 
to be corrected for changing air pressure either directly using a ‘vented’ system design, 
or via a data processing correction using a nearby air pressure sensor, so that the 
system reports water level changes, rather than just pressure changes. Multiple 
measurement points are required to ensure appropriate representation of site 
conditions.  Modelled results in this section relate to mean annual water-table depth, 
indicating that a regular measurement regime would be required to capture variation in 
water table across the year (Table 3). 

 

Table 3 4: Additional search terms regarding Water Table 

Water Table 
Water Table "“Water table” OR “Water table depth” OR “Moisture Probes” 

OR “dipwells” OR “dip-wells” OR “dip wells” OR “rewetting” 
OR “re-wetting” OR “restoration” OR “drained” OR 
“undrained” OR “ground water level” 

8.3.2 Topography 

Topography can be an important proxy for estimating emissions since changes in 
surface height can be used to assess erosion and features (hags) vulnerable to erosion. 
Additionally, small increases in height over time can be indicative of moisture changes 
events, accumulation of organic matter and methane ebullition events. It is important 
to measure topographic features at appropriate scales due to the fractal nature of 
ecosystem-surfaces. For example, hummocks (higher CO2 emissions), hollows (lower 
CO2 emissions) and erosion should be measured at the cm to m scale while gradients 
and pools at the 10s to 100s m of scale are important for watershed hydrology.  

Aerial LiDAR (Light Detection and Ranging) measures topography through the bouncing 
of laser pulses off of objects in the terrain. Lasers are emitted towards the ground and 
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the time it takes for the laser to return is measured, from which the relative height of the 
area that the laser interacted with can be calculated. The detector can measure 
multiple bounces (“returns”) from one pulse such that if deployed within a forest 
canopy, it can first measure the return from the canopy, then the return from the ground 
(provided enough signal can get to and from the ground). From this information, point 
clouds can be formed showing the geometry of both the Earth’s surface and vegetation 
layers. The intensity of the laser light returning in the pointcloud is indicative of surface 
reflectivity. This is useful for measuring vegetation depth and the topography of peat 
under forests (Yallop, Thacker and Clutterbuck, 2024). Digital Elevation Models (DEM) of 
topography are sub-divided into Digital Surface Models (DSM), which represent the 
elevation of the earth’s surface including ‘things’ on top of it such as buildings or trees, 
and Digital Terrain Models (DTM), which represent the elevation of the bare earth. The 
latter can be reliably constructed using LiDAR. Typically, DTMs are required to assess 
peat functionality including hydrology and emissions. Since laser light is never perfectly 
parallel, the footprint of the laser increases linearly with collection height. Typically, 
from an aircraft at 1,000 m above ground level, the laser will have roughly a 1m diameter 
footprint, (Yallop, Thacker and Clutterbuck, 2024). 

Aerial photographs can also be used to evaluate surface height. If one location is 
viewed from at least two separate angles, parallax (depth perception) can be used to 
determine the height of the location. However, this method cannot measure objects 
beneath canopies. 

 Synthetic Aperture Radar (SAR) and  Interferometric SAR (InSAR) are a satellite 
techniques that use microwave signals reflected from earths Surface. SAR measures 
the intensity of the microwaves returning (back-scatter) which depends on surface 
properties such as roughness, vegetation structure, and moisture content. In wetlands 
and peatlands, changes in WTD influence soil and vegetation moisture, which affects 
the dielectric properties of the surface which, in turn, affects how the microwaves 
interact with the surface. When the water table is close to the surface, soils and 
vegetation are wetter and tend to produce stronger backscatter signals. Conversely, 
when the water table drops, soils dry out, and backscatter generally decreases.  

InSAR uses two separate signals of the same location and measures the phase (i.e. 
position in the wave cycle) of the returning signals are measured. Changes in phase 
between the signals can be used to determine changes in elevation. However, due to 
the repeating nature of the phase, if the phase shift is greater than half the wavelength, 
the exact change in elevation cannot be determined as there is no way to tell the 
difference between half-wavelength multiples of the phase shift (i.e,. it can only 
determine elevation changes modulo half-wavelength).  This limitation can be 
overcome using a technique called phase unwrapping. By assuming elevation changes 
between neighbouring pixels are bounded, phase-shifts between nearby pixels can be 
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used to distinguish between half-phase multiples and exact changes in elevations can 
be estimated. 

Due to its high accuracy at small spatial scales, InSAR can detect bog breathing4 
(Tampuu et al., 2022), which is believed to be indicative of peatbog function due its 
relationship to moisture content and loss of peat mass. Bog breathing may have a 
significant impact on peat carbon-stocks or mass loss via surface height 
measurements (Morton and Heinemeyer, 2019). Bog breathing is also linked to 
ebullition, the sudden release of gas stored below the soil surface. These short-time 
scale events can contribute significantly to yearly methane emissions but are hard to 
measure with InSAR due to temporal resolution. In addition, dense peat can trap gas 
bubbles for lengthy periods leading to the decoupling of methane generation (a function 
of temperature and moisture conditions) to methane release and measurement 
(Ramirez et al., 2015), making it hard to correlate proxy variables to emissions. If instead 
the gas is released steadily, the methane within them can be consumed in the drier 
oxygen-rich layers converting the potent GHG into CO2 thus reducing the net global 
warming potential (Rosenberry, Glaser and Siegel, 2006).  and its measurement can 
improve and explain variability in emissions measurements (Table 4). 

Table 4 5: Additional search terms regarding microtopography  

Microtopography 
General Surface 
elevation 

"bog breathing" OR "surface oscillation*" OR "peat surface 
motion" OR "peat surface movement" OR “surface elevation”  

InSAR “InSAR” OR  
LiDAR "LiDAR" OR “Light Detection and Ranging” OR "airborne laser 

scanning" OR "ALS"  
Photogrammetry "photogrammetry" OR "structure from motion" OR "SfM" 

"photometric stereo" OR "stereo photogrammetry" OR 
"stereophotogrammetry" 

 

8.3.3 Spectral Earth Observations 

Earth Observation (EO) refers to the collection and analysis of data about the Earth’s 
surface and atmosphere using sensors such as satellites and aerial drones. Spectral 
Earth observations, which rely on reflected or emitted light to infer vegetation and 
surface properties are particularly useful for assessing peatland photosynthetic activity 
and possibly hydrological status. 

Vegetation indices (VIs) are functions of surface reflectance values from different wave-
length bands (e.g. red, near-infrared (NIR), and shortwave infrared (SWIR)) derived from 
satellite or aerial sensors. They are designed to isolate the parts of reflected light that 
are associated with plant function. In the context of peat emissions, VIs act as proxies 

 
4 The rising and falling in peat elevation as the peat gets wetter in winter and drier in summer. 
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for photosynthetic activity (via chlorophyll absorption) and can be interpreted to be 
associated with water stress and plant health. All VIs used in papers cited in this review 
to predict GHG emissions from peat are summarised in Error! Reference source not 
found.. 

Fluorescence and physiological indices, e.g. Solar-Induced Chlorophyll Fluorescence 
(SIF), directly measure plant function rather than light reflectance. While reflectance 
indices measure light reflected from leaves to infer greenness or water content, 
fluorescence and physiological indices capture light re-emitted or reflectance shifts 
linked to photosynthetic efficiency and light use efficiency (LUE). These indices can 
provide more direct insight into how plants convert absorbed photosynthetically active 
radiation (PAR) into carbon through photosynthesis. 

Additional search terms for spectral earth observations used in the targeted literature 
search are found in Table 5. 

Table 56: Definition of the most relevant commonly used reflectance-based vegetation indices to be approximate 
emissions from peat identified during review. Studies cited in this report may use different equations dependent on 
sensor used. This has not been compared in this report. 

Index Full Name 
Primary Sensitivity / 
Interpretation 

NDVI 
Normalized 
Difference 
Vegetation Index 

Classic greenness index; 
correlates with chlorophyll 
content and canopy density. 

EVI 
Enhanced 
Vegetation Index 

Reduces atmospheric and soil 
background effects; performs 
better in dense vegetation. 

EVI2 
Two-band 
Enhanced 
Vegetation Index 

Simplified EVI excluding blue 
band; used when blue 
reflectance is unavailable. 

SR Simple Ratio 
Early greenness metric; 
directly related to canopy 
chlorophyll and leaf area. 

kNDVI 

Kernel 
Normalized 
Difference 
Vegetation Index 

Nonlinear form of NDVI; 
enhances sensitivity to 
canopy structure. 
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NIRv 
Near-Infrared 
Reflectance of 
Vegetation 

Separates vegetation signal 
from background reflectance. 

GRVI 
Green–Red 
Vegetation Index 

Sensitive to canopy greenness 
and seasonal phenological 
changes. 

NGRDI 
Normalized 
Green–Red 
Difference Index 

Similar to GRVI; widely used 
for RGBRGB UAVs. 

Red-
edge 
CI 

Red-edge 
Chlorophyll Index 

Sensitive to chlorophyll 
concentration and 
photosynthetic potential. 

NDWI 
Normalized 
Difference Water 
Index 

Indicates vegetation and 
canopy water content. 

NDMI 
Normalized 
Difference 
Moisture Index 

Similar to NDWI; detects plant 
and soil moisture. 

LSWI 
Land Surface 
Water Index 

Similar to NDWI. detects plant 
and soil moisture.  

MWI 
Modified Water 
Index 

Sensitive to vegetation and 
canopy water content. 
Indicates vegetation moisture 
or stress levels. 

 

Table 67: Fluorescence and Physiological Indices that have been found to be used to approximate emissions from 
peat in this review. 

Index / 
Variable 

Definition Primary Sensitivity / Interpretation 

SIF 
Solar-Induced 
Chlorophyll 
Fluorescence 

Weak red/far-red light (650–800 nm) emitted by 
chlorophyll during photosynthesis. Direct proxy 
for photosynthetic activity. 

LUE Light Use Efficiency Ratio of carbon fixed to absorbed PAR (GPP = 
PAR × fAPAR × LUE). Often modelled using 
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vegetation indices and environmental stress 
terms. 

PAR 
Photosynthetically 
Active Radiation 

Portion of solar radiation (400–700 nm) available 
for photosynthesis; key input to LUE and 
photosynthesis models. 

 

Table 68: Additional Search Terms Regarding Spectral Earth Observations 

Spectral Earth Observation 
 
Satellites and 
research programs 

 

Vegetation Indices "Vegetation indices" OR "NDVI" OR "MTCI" OR "EVI" OR "SAVI" 
OR "PRI" OR "LAI" OR "FAPAR" OR "NDWI" OR "Spectral 
index*" OR "Spectral indices" OR "remote sensing index*" OR 
"remote sensing indices" OR  

 
Light use efficiency 

 

 

8.3.4 Erosion 

Lost organic matter from erosion can be emitted as CH4 or CO2 downstream which is 
important when reflecting total GHG emissions from degraded peat. 

Erosion of soil is typically measured using:  

• Direct measurements such as erosion pins and stream water sampling. 
• Isotopic tracers which can trace eroded material based on N or C isotope ratios. 
• Fallout radionuclides (FRN) which measure concentrations of isotopes e.g. 210Pb 

deposited on the land surface, in soil cores which can date soil layers. 
• Geochemical fingerprinting where chemical fingerprints (e.g. ratios of rare earth 

elements) of eroded material can be traced back to its source. 

Search terms used for systematic peat erosion are found in Error! Reference source 
not found.. However, we note that direct measurements of GHG and erosion 
measurements are typically not performed in single studies since the emissions occur 
off-site. Therefore, the strict search terms in Table 2 likely miss important literature on 
this topic. 

Table 7 9: Additional Search Terms Regarding Erosion 

Erosion 
 
Fallout radionuclides 
(FRNs) 
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Geochemical 
fingerprinting 

“rare earth element*” OR “REE tracer*” 

 
Isotopic tracers 

 

Direct physical 
measurement 
methods 

“erosion pin*” OR “erosion bridge*” OR “profile meter” OR 
“erosion marker horizon” 
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Appendix 4: Review findings 

9.1 Drivers of Peat GHG emissions 
The predominant proxy variables which control components of the Peat GHG balance 
are identified in Error! Reference source not found. below.  The drivers of each 
component were determined from the review of water-table depth and spectral earth 
observations which can be found in Section 9.3 and 9.4. The drivers are ranked (from 
left to right) according to their overall importance in predicting the GHG components.  
For instance, the most significant control on Gross Primary Productivity in most 
conditions is light and leaf area, followed by temperature, water-table depth, and soil 
nutrients and pH. This ranking seeks to provide an overall indicator of importance 
caveated that in reality, these rankings depend on site specifics and the relative 
contribution of drivers in specific circumstances continues to be debated within the 
literature.   

As can be seen from Error! Reference source not found., WTD and soil temperature 
are common drivers across all GHG components.   

Table 810: Important proxy variables (“Drivers”) for predicting individual component in the peat GHG balance at the 
yearly time scale. Drivers are listed in approximate order of importance; however, the order may vary dependent on 
conditions and are debated in the literature. Greenhouse Gas (GHG) components are Gross Primary Productivity 
(𝐺𝑃𝑃); autotrophic and heterotrophic respiration (𝑅𝑎  and  𝑅ℎ  respectively); methane flux (𝐶𝐻4

𝐹𝑙𝑢𝑥); nitrous oxide flux 
(𝑁2𝑂𝐹𝑙𝑢𝑥 ). Drivers are Soil Temperature (Temp); Water Table Depth (WTD); soil nutrient status, particularly nitrogen 
Nutrients/pH); Ebullition refers to the sudden release of gas from peat.   was not examined in this review and drivers 
are inferred from understanding of the mineral-soil nitrogen cycle. 

GHG 
Component 

Key Drivers 

𝐺𝑃𝑃 
Light & leaf area index → Soil Temp → WTD → 
Nutrients/pH 

𝑅𝑎 GPP  

𝑅ℎ WTD → Soil Temp → Nutrients/pH 

𝐶𝐻4
𝐹𝑙𝑢𝑥  WTD  → Soil Temp →Plant species →Ebullition 

𝑁2𝑂𝐹𝑙𝑢𝑥  Nutrients/pH (esp. N availability) → WTD ~ Soil  Temp 

 

9.2 Accuracy of measurement methods 
Potential methods of measuring the drivers of peat GHG emissions are listed in Error! 
Reference source not found. in the main text.  The degree to which each measurement 
method accurately reflects drivers of each emissions component is given a qualitative 
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score based on how successfully the measurement method has been used to 
approximate the driver within models of the emission components identified within the 
literature search. Importantly, this qualitative accuracy scoring is not indicative of how 
well the method predicts the full GHG balance, rather it relates to the ability to 
approximate that specific driver in emissions models. 

Gross primary productivity: The amount of light a parcel of land receives and the 
quantity of leaves it contains could be well approximated by earth observations, and 
ground-based measurements are not required to target on this proxy variable (Error! 
Reference source not found.). Using hyper-spectral sensors to detect Solar-Induced 
Fluorescence (SIF), for example, could possibly improve estimates of GPP compared to 
multispectral sensorsError! Reference source not found.. However, this increased 
spectral resolution often comes at the expense of temporal and particularly spatial 
resolution, which may diminish the ability to distinguish emissions between landowners 
in a tax context. Although not explicitly targeted in the literature search, temperature 
was often included in studies estimating GPP and NEE of peatland with authors often 
using land surface temperature (LST) derived from earth observations or 
interpolated/reanalysed meteorological data in models. Both can produce good 
estimates of GPP, Error! Reference source not found.. Again, temperature can be 
measured sufficiently without relying on ground-based measurements. 

Water-table depth: The only reliable country-wide approach for accounting for WTD 
was using ground-based dipwells, Error! Reference source not found.. Therefore, 
achieving the spatial resolution required to handle ownership parcels would require the 
installation of several dipwells per site on a peat ownership basis. WTD, when 
measured with dipwells, can approximate NEE and CH4 emissions well. Some authors 
find that WTD alone can approximate peat emissions well, but the current review would 
recommend the inclusion of VIs and temperature to ensure that GHG approximations 
are reliable across the range of vegetation and conditions found in Scottish peat. This 
would also be sensitive to changes in climate. A major conclusion of this review is that 
the lack of remote methods for measuring WTD is limiting the approximation of 
peatland GHG emissions at the national scale.  

Several authors tried to include the effect of WTD on GPP, NEE and less often CH4 
emissions by approximating WTD with water-based indices derived from surface 
reflectance (LSWI/MWI in Error! Reference source not found.). This approach infers 
WTD based on the drought-stress of the vegetation as detected by surface reflectance 
and from hyper-spectral sensors on aircraft. In Canadian peat bogs, this approach has 
been successful in predicting NEE at short time scales and for low and narrow ranges of 
WTD, but was shown to be a bad indicator of yearly NEE in Scandinavian peatbogs since 
its inability to detect seasonal changes in WTD. The review suggests that remote 
sensing methods using reflectance data alone are currently not accurate enough to 
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predict WTD for the purposes of estimating CH4 and Rh emissions from peatland in 
Scotland. 

InSAR has recently been used to infer WTD in peatland to varying degrees of success 
depending on site properties and rates of drying and wetting. This research is in its early 
stage and would requires more validation and understanding of variability. Given the 
lack of remote measurements of WTD, we recommend further research into InSAR 
derived WTD, particularly research that links these measurements to NEE and CH4

 flux. 

Process-based hydrological modelling as means of estimating WTD was not 
investigated in this report but it may be possible to interpolate coarser dipwell results to 
finer scales using physical modelling approaches. In general, standard models of 
groundwater hydrology should be adapted to account for the expansion of the media 
when applied to peat.  

Theoretically, InSAR can detect bog breathing and ebullition events. However, we did 
not find studies which related InSAR signals to direct measurements of peatland GHG 
emissions5.  

N2O emissions were not explicitly considered in this review but nitrogen concentrations, 
besides the drivers already mentioned, are known to be the major controller of these 
emissions. Soil tests, fertilisation and stocking density data are reliable approaches for 
determining nitrogen contents of peat.  Remote methodologies for determining nitrogen 
concentrations in peat are left for another study (Table 1). 

9.3 Comparison Matrix of Measurement Strategies 
To assess cost and accuracy it was necessary to define measurement scenarios which 
combine multiple measurements, since effective modelling of some GHG components 
(e.g. soil respiration) requires information on multiple drivers. It was not possible/useful 
to score individual proxy measurements against the criteria since they could not predict 
peat emissions across the wide range of Scottish peat conditions as stand-alone 
measurements. The final table provides a comparison of four measurement scenarios, 
in relation to their cost and accuracy of measuring the full peat GHG balance, Error! 
Reference source not found..   

Each scenario outlines a suite of methods that together may be used to measure key 
drivers of peat GHG emissions: light and leaf-area characteristics, surface temperature, 
and water-table depth (WTD), with optional soil sampling for nutrient and pH data. Each 
measurement scenario meets the criteria of providing sufficient spatial and temporal 
resolution. Scenarios progress from low-cost, low-accuracy remote sensing (Scenario 

 
5 which is why InSAR has a score of Low in the ebullition column of Table 1.  
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1) to increasingly detailed hybrid ground/remote approaches incorporating on-site 
dipwells, soil analysis, and hyperspectral data (Scenarios 2–4). Costs are presented for 
two monitoring extents (ScotGov Target: 250,000 ha and the entire 1990-degraded peat 
area in UK National Inventory: 1,952,000 ha) and include annual operational and initial 
capital expenditures.  Costing in Table 9 is indicative and reflects assumptions (detailed 
in subsequent section).  Reported GHG coverage (CO₂, CH₄, N₂O) and indicative 
accuracy reflect each method’s capacity to resolve drivers of emissions, as set out in 
Table 1. 

Errors in WTD measurements will likely propagate nonlinearly (potentially even 
exponentially) into errors in estimates of NEE and CH₄, as many authors use nonlinear 
relationships between WTD and these fluxes to capture the underlying processes. 
Therefore, the absence of accurate remote measurements of WTD remains the key 
limitation, and we conclude that it is not currently feasible to provide an accurate 
measurement of the full peat GHG balance using only remotely sensed data (Scenario 
1). Scenarios 2- 4 provide greater accuracy but at increased cost.  The greatest 
improvement in accuracy is brought by incorporating site level measurement of water 
table in Scenario 2. However, this also marks the most significant contribution to cost, 
due to the cost installing and maintaining dipwells on peatland sites. Moving from 
Scenario 2 to 3 accounts for N2O emissions with soil testing of peat under crops (not 
grass). Scenario 4 uses hyper-spectral detectors to improve estimates of 
photosynthesis, and possibly with further research to overcome WTD limitations, but 
comes at the expense of decreased resolution which may limit its ability to account for 
peat ownership. 

Cost estimates provided in this report reflect a significant assumption that 3-5 dipwells 
would be required per 100ha. It should be noted however that this remains an area of 
unresolved uncertainty.  An alternative costing of national peatland monitoring provided 
by Artz et al. (2023) calculated that 0.85 dipwells would be required per 100ha. 
Extrapolation of Artz et al.’s costing suggests that dipwell installation and monitoring 
costs could be 3-6 times lower than estimated in this report.  Dipwell spacing in Artz et 
al. (2023) is extrapolated from monitoring at Flanders Moss, which is relatively flat and 
homogenous in comparison to the variety of peatland conditions and site topography 
present across Scotland.  In addition, Artz et al.’s costing is presented in the context of a 
national monitoring framework rather than a parcel- or holding-level tax, and does not 
specify sensor models or performance characteristics in a way that allows direct 
comparison with the higher-specification pressure sensors and quality assurance 
assumptions used in this report. In a tax context, measurement design must be 
sufficiently robust to support independent verification, withstand audit and appeal, and 
minimise the risk that drift, missing data or local heterogeneity leads to systematic over- 
or under-assessment of liabilities; these requirements tend to increase both the density 
of instrumentation needed in complex terrain (e.g. around drains, slope breaks and 
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heterogeneous management units) and the minimum sensor specification and QA 
procedures required to demonstrate data reliability. 

At further extreme, Allot et al. (2009) calculated that 15 dipwells would be required to 
provide a reliable estimate at their highly eroded 30m by 30m site (which they 
specifically selected to represent the worst case scenario of maximum variation at site 
level).  Beyond these estimates we could find no clear signal of required dipwell spacing 
in the literature, 3-5 per 100ha is presented as a best guess.  This assumption is 
therefore used as a precautionary, tax-relevant standard intended to be broadly 
applicable across diverse Scottish peatland settings, rather than as an estimate for 
national-scale monitoring alone. It reflects the need for representative mean annual 
WTD estimates at holding scale, while limiting the risk that localised conditions 
dominate measurements, and it provides a transparent basis for costing and sensitivity 
testing in Table 9. This is broadly in line with actual dipwell spacing per 100ha (1.6, 3.2, 
3.5, 5.7, 15) within the underlying studies analysed by Evans et al. (2021).  
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Table 9 11: Comparison matrix of measurement strategies for estimating peatland greenhouse gas (GHG) emissions. Each scenario outlines a suite of methods used to measure light 
and leaf-area characteristics, surface temperature, and water-table depth (WTD), with optional soil sampling for nutrient and pH data. Costs are presented for two monitoring extents 
(ScotGov Target: 250,000 ha and all degraded peat: 1,952,000 ha) and include annual operational and initial capital expenditures. Scenarios progress from low-cost, low-accuracy 
remote sensing (Scenario 1) to increasingly detailed hybrid ground/remote approaches incorporating on-site dipwells, soil analysis, and hyperspectral data (Scenarios 2–4). Reported 
GHG coverage (CO₂, CH₄, N₂O) and indicative accuracy reflect each method’s capacity to resolve drivers of emissions. 

Scenario Assumed 
measurement 
protocol 

Item Annual operational cost Initial capital cost GHG 
Coverage 

Accuracy 

250,000ha 1,952,000ha 250,000ha 1,952,000ha 

Scenario 1: Remote 
Sensing 
 
Light and Leaf area: 
Satellite derived VIs – 
Utilising open source 
MODIS, Landsat, Sentinel 
data 
 
Temperature: LST/ 
Meteorological data 
 
WTD: LSWI/MWI 

Open source satellite 
and meteorological 
data obtained, 
inspected and 
processed annually. 
 
Initial model 
development and 
calibration using 
existing UK and 
Ireland site 
measurements drawn 
from literature. 
 
 

 
Initial model 
development  
 
Annual data 
acquisition cost  
 
Data integration 
and processing 
 

 
- 
 
 

Nil 
 
 

£42,000 
 

 
 

Total: 
£42,000 

 

 
- 
 
 

Nil 
 
 

£84,000 
 

 
 

Total: 
£84,000 

 

 
£3,000,000 

 
 

- 
 
 

- 
 

 
 

Total 
£3,000,000 

 
£3,000,000 

 
 

- 
 
 

- 
 

 
 

Total 
£3,000,000 

 
 
 
 
 
 
 
 
 
 
 
CO2, CH4 
(Missing 
N2O) 

Poor  
 
LSWI provides 
an 
inconsistent 
approximation 
for water table 
over longer 
time periods, 
and modelling 
of respiration 
and CH4 
requires 
information 
on WTD. 

Scenario 2: Remote 
Sensing with on-
site water table 
measurement 
 
Light and Leaf area: 
Satellite derived VIs – 
Utilising open source 
MODIS, Landsat, Sentinel 
data 
 
Temperature: LST/ 
Meteorological data 
 

Open source satellite 
and meteorological 
data obtained, 
inspected and 
processed annually. 
 
Initial model 
development and 
calibration using 
existing UK and 
Ireland site 
measurements drawn 
from literature. 
 
Average annual water 
table depth 

 
Initial model 
development  
 
Dipwell 
construction cost  
 
Annual data 
acquisition cost  
 
Data integration 
and processing 
 
Annualised cost of 
5 yearly dipwell 

 
- 
 
 

- 
 
 
 
 

Nil 
 

£63,000 
 
 

£450,000 
 

 
- 
 
 

- 
 
 
 
 

Nil 
 

£126,000 
 
 

£3,500,000 
 

 
£3,000,000 

 
 

£8,305,000 
 
 
 
 

- 
 

- 
 
 

- 
 

 
£3,000,000 

 
 

£64,845,000 
 
 
 
 

- 
 

- 
 
 

- 
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WTD: Dipwells installed 
at site.  Remote 
monitoring of water table 
by pressure transducer.   

determined from 3-5 
dipwells per 100ha. 
installed at site and 
remote sensing by 
pressure transducer.  

servicing by 
ecological surveyor. 

 
Total: 

£513,000 
 

 
Total: 

£3,626,000 
 

 
Total: 

£11,305,000 
 
 

 
Total: 

£67,845,000 
 

 
CO2, CH4 
(Missing 
N2O) 

 
Good and 
costly 

Scenario 3: Remote 
Sensing with on-
site water table 
measurement and 
soil testing to target 
N2O 
 
Light and Leaf area: 
Satellite derived VIs – 
Utilising open source 
MODIS, Landsat, Sentinel 
data 
 
Temperature: LST/ 
Meteorological data 
 
WTD: Dipwells installed 
at site.  Remote 
monitoring of water table 
by pressure transducer.  
Annual calibration. 
 
Nutrients and Ph: 
Annual soil testing. 
 

Open source satellite 
and meteorological 
data obtained, 
inspected and 
processed annually. 
 
Initial model 
development and 
calibration using 
existing UK and 
Ireland site 
measurements drawn 
from literature. 
 
Average annual water 
table depth 
determined from 3-5 
dipwells per 100ha. 
installed at site and 
remote sensing by 
pressure transducer.  
 
Annual soil testing of 
9,000ha cropped 
peatland area. 
 

 
Initial model 
development  
 
Dipwell 
construction cost  
 
Annual data 
acquisition cost  
 
Data integration 
and  processing 
 
Annualised cost of 
5 yearly dipwell 
servicing by 
ecological surveyor. 
 
Annual soil testing 

 
- 

 
 

- 
 

 
Nil 

 
 

£63,000 
 
 

£450,000 
 
 
 
 

£8,000 
 
 

Total: 
£521,000 

 
- 

 
 

- 
 
 

Nil 
 
 

£126,000 
 
 

£3,500,000 
 
 
 
 

£56,000 
 
 

Total: 
£3,682,000 

 
 

 
£3,000,000 

 
 

£8,305,000 
 
 

- 
 
 

- 
 
 

- 
 
 
 
 

- 
 
 

Total: 
£11,305,000 

 

 
£3,000,000 

 
 

£64,845,000 
 
 
 

- 
 
 

- 
 
 

- 
 
 
 
 
 

- 
Total: 

£67,845,000 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CO2, CH4, 
N2O 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Good and 
costly 
 
Improves 
applicability 
of Scenario 2 
to better 
reflect N2O 
emissions 
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Scenario 4: 
Hyperspectral data 
with on-site water 
table and soil 
testing 
 
Light and Leaf area: 
Hyperspectral data 
 
Temperature: LST/ 
Meteorological data 
 
WTD: Dipwells installed 
at site.  Remote 
monitoring of water table 
by pressure transducer.  
Annual calibration. 
 
Nutrients and Ph: 
Annual Soil testing. 

Hyperspectral data 
obtained, inspected 
and processed 
annually. 
 
Initial model 
development and 
calibration using 
existing UK and 
Ireland site 
measurements drawn 
from literature. 
 
Average annual water 
table depth 
determined from 3-5 
dipwells per 100ha. 
installed at site and 
remote sensing of 
pressure transducers. 
 
Annual soil testing of 
9,000 ha cropped 
peatland area 

 
Initial model 
development  
 
Dipwell 
construction cost  
 
hyperspectral data 
acquisition cost  
 
Data integration 
and processing 
 
Annualised cost of 
5 yearly dipwell 
servicing by 
ecological surveyor. 
 
Annual soil testing 
 

 
- 
 
 

- 
 
 

£110,000 
 
 

£63,000 
 
 

£450,000 
 
 
 
 

£8,000 
 
 

Total: 
£631,000 

 
- 
 
 

- 
 
 

£860,000 
 
 

£126,000 
 
 

£3,500,000 
 
 
 
 

£56,000 
 

 
Total: 

£4,542,000 

 
£3,000,000 

 
 

£8,305,000 
 
 

- 
 
 

- 
 
 

- 
 
 
 
 
 
 

 
Total: 

£11,305,000 
 

 
£3,000,000 

 
 

£64,845,000 
 
 

- 
 
 

- 
 
 

- 
 
 
 
 
 

 
 

Total: 
£67,845,000 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CO2, CH4, 
N2O 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Good and 
costly  
 
Improves 
accuracy at 
predicting 
GPP 
compared to 
scenario 3 but 
may lose 
spatial 
resolution.   
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9.4 Costing Assumptions 
 

Initial model development  

£3,000,000 research project  

 

Satellite data 

Satellite data acquisition cost is nil if using open source. 

Annual data processing and integration of satellite, meteorological and landownership data:  1- 2 
FTE roles.  £42,000 – £84,000.  Assume an additional 50% markup on data processing and 
integration, where processing and integration of water table data is further required.   £63,000 - 
£126,000. 

To tile Scotland would take 8 Landsat tiles. Landsat scene image size is 185km = 34,225km2. 

To tile Scotland would take 18 HLS tiles. Harmonised Landsat and Sentinel (HLS) images are 
109.8km =12,056km2.   

To tile Scotland would take 2 MODIS tiles 

 

Dipwell construction 

Assume 3- 5 dipwells required per 100 ha.  Average 4 per 100ha. 

 

Cost of labour 

Ecological surveyor visits site and develops schedule of works.  Assume 1 day per 200ha = 0.5 
days per 100ha.   

Contractor visits site with materials.  Augers well [either by hand/ with mini excavator], and fits 
dipwell and remote sensor.   

Assume 1- 2 days required to construct 3- 5 dipwells.  Average 1.5 days 

Ecological contractor day rate: assume £300- £400.  Average £350 

Ecological surveyor day rate: assume £400 - £500.  Average £450 

Total cost of labour per 100ha = 0.5 × 450 + 1.5 × 350 = £750       

 

Cost of materials  

Item Cost  Detail 
PVC pipe      £77.42 (half of 5m 4inch class E pipe) 
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Gravel      £11.40 25 kg sack 
Bentonite £26.00 (half of 25kg sack) 
Sand and cement £10  
 
Pressure sensor (commercial design)  

  
£518.40  

 
 
ALTA Wireless pressure meter 
[MNS2-8-W2-PS-300-SW].  10 year 
battery life 

Pressure sensor (commercial design) £462.28 Druck PDCR 1830 
Pressure sensor, temperature and data 
logger (commercial design) 

£1050 TROLL 500 

 
Total cost of dipwell materials £643 
 
 
Total cost of dipwell installation 
 
Cost of dipwell installation per 100ha = Cost of labour + cost of materials 
 
Cost of dipwell installation per 100ha 

 = £750 + (£643 ∗ 4) = £3322 
 
 
Total cost of dipwell installation (1,952kha);  

 = 1952 ×
1000

100
× £3322 = £64,845,440 

Total cost of dipwell installation (250,000ha); 

 = 250,000 ×
1

100
× £3322 = £8,305,000  

 

Dipwell maintenance  

Annual visit by ecological surveyor to change batteries on pressure sensor, check dipwell free 
and not choked and conduct response time tests. 
 

Total peat area = 1952kha (1990) 
 

Total Degraded Peat Area: 1461 kha (1990) [excluding near natural bog] 
 

Ecological surveyor serviced area per day: 250 ha [walk 6-10k, service 6-10 dipwells] 
 

Ecological surveyor daily rate: £400- £500. Average £450 
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Annual cost of yearly site visit for dipwell maintenance = 1952×1000/250 × 450 = £3,513,600 per 
annum. 
 

Annual cost of yearly site visit for dipwell maintenance = 250,000/250 × 450 = £450,000 per 
annum. 

 

Soil Testing 

Soil testing required for proportion of peat that is cropped. 

Peat Crop Area = 9kha 

Soil samples collected by ecological surveyor.   

Ecological surveyor serviced area per day:  300ha.   [Walk 10- 16k.] 

Ecological surveyor day rate: £400 - £500.  Average £450 

Labour cost of Total 9kha = 9 × 1000 ×  
1

300
 × 450 = £13,500 

Labour cost of part of 9kha = 9 ×
250,000

1,952,000
× 

1

300
 × 450 = £1,729  

Cost of sample analysis assumed to be £4.66 per ha.  Eory et al. (2025) report an average value 
of £4.66 per ha to conduct soil testing for nitrogen 

Cost of Total 9kha = 9 × 1000 × 4.66 = £41,940 

Cost of Part of 9kha =  9 × 1000 ×
250,000

1,962,000
× 4.66 = £5,344 

Total cost of 9kha  = £13,500 +  £41,940 = £55,440 

Total cost of part of 9kha = £1,729 +  £5,344 = £7,073 

 

Hyperspectral data 

Hyperspectral data is available at 50 euro per km2 = £44 per km2 (Leonie et al., 2025) 

Annual cost of 250,000 ha = 250,000 ×
1

100
× 44 = £110,000 

Annual cost of 1,952kha = 1,952,000 ×  
1

100
× 44 = £858,880 

 

Artz et al. (2023) costing 

We are grateful to peer reviewers who provided an alternative costing.  Artz et al. (2023) 
estimated the cost to maintain a national network of 100 monitoring sites, calculating that a 
network of 700 dipwells would be required to provide effective monitoring at those 100 sites.  
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They estimated that installing this network of 700 dipwells would cost. 

 Equipment:      £105,000 

 Dipwell construction materials:  £20,000 

 Labour:     200 person days 

Artz et al. (2023) do not provide a value for labour cost.  Assuming £350 day rate for ecological 
contractor, to enable comparison 

Labour:     £70,000 

Total cost for 700 dipwells   £195,000 

Total cost per dipwell    £278.57 

Artz et al. (2023) extrapolate required dipwell spacing from water table monitoring at 
Flanders Moss, where they calculated that a minimum of 7 dipwells would be required 
provide a reliable estimate of mean annual water table.  Flanders moss is 821ha. 

 7

821
= 0.85 𝑑𝑖𝑝𝑤𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 100ℎ𝑎 

 

Total cost of dipwell installation (1,952kha)   

 = 1952,000 ×
0.85

100
× 278.57 =  £4,622,033 

Total cost of dipwell installation (250,000ha)  

 = 250,000 ×
0.85

100
× 278.57 = £591,196  

 

Annual maintenance cost 

Artz. et al. (2023) further specify that an annual site visit would be required to download data 
and perform a manual water table calibration and dipwell displacement check.  No value for 
cost of labour is provided.  Assuming £450 day rate for ecological surveyor, to enable 
comparison, this implies a further annual cost of £450 per 7 dipwells, or £64.28 per dipwell. 

Annual cost of dipwell maintenance (1,952kha)   

 = 1952,000 ×
0.85

100
× 64.28 =  £1,066,533 

Annual cost of dipwell maintenance (250,000ha)  

 = 250,000 ×
0.85

100
× 64.28 = £136,595 
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Costing Comparison 

  250,000ha 1,952,000ha 

   Dipwells 
required 
per 100 ha 

Installation 
Cost  

Annual 
maintenance  

Installation Cost  Annual 
maintenance  

This report  4 £8,305,000 £450,000 £64,845,000 £3,513,600 

Authors 
estimate 
extrapolating 
from Artz et al. 
(2023) with 
additional 
assumption on 
cost of labour 

0.85 £591,196 £136,595 £4,622,033 £1,066,533 

 

 

9.5 Topography 
The search terms yielded 32 hits in the Web of Science Database and an additional 23 
hit in the SCOPUS database. Of the 55 unique articles, 7 were deemed suitable for 
further reading after reading the abstract.  

Key Findings: Topography 

• No studies compared topographic measurements (InSAR, LiDAR, 
photogrammetry etc) to peat GHG emissions quantitatively. 

• Often, topographic measurements were used to explain differences in 
measurements qualitatively. 

• Topographic features could affect EC measurements by their effect on airflow.  
• No studies linked bog-breathing to yearly emissions estimates. 
• InSAR shows promise as a means for estimating water table depth, however, 

more research is required to understand variability across sites.  
• No study in the targeted literature review linked InSAR derived surface motion to 

peat GHG emissions directly. 
• Time-resolved LiDAR surveys show promise for estimating GPP in agriculture by 

measuring changes in crop height, however, this has not been transferred to peat 
ecosystems. Spectral earth observations are currently the cheaper and more 
established approach to capture these phenomena. 
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Several papers deemed relevant used measurements of micro-topography to explain 
emissions differences between hummocks and hollows (Lees et al., 2021). With 
authors find that hummocks have greater CO2 emissions but less methane emissions 
than hollows (Wu et al., 2011). In general, NEP is higher in hummocks but they are 
known to consume atmospheric methane at low rates (Frenzel and Karofeld, 2000). 
Many of these results can be derived from understanding of the control of water table 
depth on CO2 and methane production, however, some authors find that living 
vegetation differences between the microforms are important for understanding net 
CO2 flux (Krohn et al., 2017). Results such as these could be used to further refine 
National Inventory type methodologies by including additional peat conditions 
categories which account for micro-topographic features. However, measurements of 
micro-topography are unlikely to be a stand-alone proxy of emissions. 

Other papers concern how surface topography could affect EC measurements due its 
effect on airflow. For example, (Herbst et al., 2011) found that friction velocity6 
(turbulent shear stress) caused by airflow interacting with the micro-topography in the 
EC footprint had a large effect on measured methane emissions from a restored 
wetland in Denmark. Footprints with a high proportion of low-lying peat had the largest 
deviation between modelled and EC measured methane emissions due to low friction 
velocities causing insufficient mixing and unreliable eddy-covariance measurements 
(Herbst et al., 2011). Zhang et al. (2020) compared measurements of CO2 and CH4 
emissions between chamber and EC methods from wetlands on the Qinghai-Tibetan 
Plateau and used temperature dependent models fit to each set of measurements to 
extrapolate results to historic emissions. The choice of measurement mode caused 
large differences in projected emissions. The 4 chambers used were not representative 
of all microtopographic features found in the seemingly-homogenous wetland while the 
EC method averaged out spatial heterogeneity of the footprint making it hard to 
translate the result to other locations without accounting for spatial features with 
modelling (Zhang et al., 2020). 

LiDAR has recently shown promise as a means of estimating GPP in arable systems by 
measuring changes in crop height from point clouds produced by LiDAR time series 
(Revenga et al., 2024). However, the literature search found no examples of these 
techniques being transferred to peat ecosystems. Additionally, this technique requires 
several LiDAR surveys per month which is not cost effective at the national scale. 
Spectral earth observations are a more established methodology for estimating GPP in 
peat (see later sections). 

Measurements of bog-breathing by InSAR seemed the most likely mode of measuring 
topography to predict annual GHG emissions due to its ability to measure bog breathing 

 
6 √(𝑢′𝑤′̅̅ ̅̅ ̅̅ )2 + (𝑣′𝑤′̅̅ ̅̅ ̅̅ )2 in the language of equation Error! Reference source not found. 
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and long- and short-terms changes in elevation thought to be indicative of subsidence 
and water table depth (Alshammari et al., 2020). The literature search suggests that 
there is no literature relating InSAR measured bog-breathing to direct measurements of 
GHG emissions from peat.  

Since the literature search on InSAR’s correlation with direct measurements of GHG 
emissions was limited, additional searches were conducted to evaluate how well InSAR 
can detect soil moisture. Both InSAR and SAR have shown promise for estimating peat 
moisture under certain conditions, with reported R² values ranging from 0.12 to 0.72 for 
SAR and from 0.05 to 0.67 for InSAR, depending on site characteristics in Irish peatbogs 
(Hrysiewicz et al., 2023). The authors found that InSAR derived surface motion could not 
accurately detect the low soil moisture in drought conditions and lagged-behind the 
increases soil moisture and water table depth following rewetting. The lag could be 
explained by phase ambiguity (See Appendix 3 Topography section) when surface 
motion is large (Hrysiewicz et al., 2023). InSAR coherence, the ‘similarity’7 of two 
sequential InSAR signals, has been shown to be related to soil moisture, particularly in 
spring/summer months and in banket bogs (R2=0.83) (Walker et al., 2025). However, 
coherence was out-of-phase with WTD resulting in lower correlation. Frozen ground 
was found to affect the Radar response causing poorer correlation in winter months 
(Walker et al., 2025). The authors investigated several pre-processing options to 
account for seasonal changes in conditions that could affect the measurement.  
Hrysiewicz et al. (2023) found a negative correlation of coherence with soil moisture 
while  Walker et al. (2025) found a positive correlation with the later authors offering 
several mechanisms for the differences. Using InSAR and SAR to estimate peat 
moisture and WTD is still in its infancy and further research is required to make it a 
reliable proxy for these variables. 

9.6 Water-table depth 
The search terms yielded 314 hits in the Web of Science Database and an additional 
220 hits in the SCOPUS database. Two further articles were identified through cross- 
citation, one further was provided by a peer reviewer.  Of the 537 unique articles, 53 
were deemed suitable for further reading after reading the abstract.   

Among these, several recent meta-analyses were identified which had made 
assessment of environmental controls on GHG emissions from peatlands.  Given the 
large volume of primary studies, the review focussed on relating findings from meta- 
analyses.  Primary studies were reviewed selectively, with a focus on articles dated post 
2020. 

 

 
7 Cross-correlation 
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Key Findings: Water table, CO2 and CH4 

UK and Ireland 

• A recent UK meta- analysis of environmental controls on emissions from UK and 
Ireland peatlands (16 sites) conducted by Evans et al. (2021) found that mean 
annual effective water table depth (WTDe) was a reliable predictor of both NEP 
(CO2 flux adjusted for grazing and other carbon offtakes) (R2=0.9) and CH4 
(R2=0.55) emissions, concluding that mean annual effective water table depth 
alone was sufficient as predictor and including additional control variables did 
not improve the predictive power of their model (where water table depth was 
measured as mean effective water table depth, i.e. not exceeding the depth of 
peat). 

• Similar functional relationships were reported by Tiemeyer et al. (2020) analysing 
a German national dataset (118 sites), however the strength of the relationship 
was not reported.  Tiemeyer et al. (2020) did not investigate further 
environmental controls due to data availability. 

• Evans et al.’s strong results contrast to those observed in an earlier analysis by 
Levy et al. (2012) utilising annual flux data from peat chamber measurements at 
21 UK sites, which observed water table to be one among several environmental 
controls on CH4 fluxes.  When assessed as univariate predictors  Levy et al. 
(2012) found a species composition index to the strongest univariate predictor of 
CH4 fluxes. 

Global  

• Findings from global meta- analyses are overall more mixed. 
• Evans et al. (2021) further report findings from an extended dataset, 

incorporating  flux measurements from a further 49 eddy covariance studies 
located globally, they found a similar linear and positive relationship for CO2, 
though with a lower gradient, and poorer model fit (R2 = 0.65).  

• Contrastingly a meta- analysis of CO2 fluxes from global wetlands conducted by 
Lu et al. (2017) (43 wetland sites) found no statistically significant effect of water 
table depth on CO2 emissions.  Within their study, mean annual temperature 
followed by Mean annual precipitation were found to be strongest univariate 
predictors of annual carbon fluxes across all wetland types. 

• Considering the full GHG balance, Zou et al., (2022) conducted a global review of 
wetland GHG fluxes collating findings from 1,875 sites (3,704 site years).  Across 
their global dataset (complete records available for 174 site years), they find that 
a near surface level water table (-1 to -30cm) minimised GHG emissions, while 
emissions peaked in both flooded and drained conditions, reflecting a parabolic 
relationship between GHG emissions and water table level.  They similarly 
observed a parabolic relationship between CO2 emissions and water table level, 
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while CH4 emissions increased linearly with water table level, and N2O emissions 
decreased linearly with water table level.  The general form of these relationships 
held across temperature regimes, boreal, temperate, and tropical sites.  Fitted 
relationships were not overwhelmingly strong however.  Across all sites, the 
relationship between water table level and net GHG flux was (R2= 0.29, n=103 
site years).  Relationships for specific GHG components were sometimes 
stronger than this, but these were overall poorer for temperate sites. 

• Other meta-analyses of CH4 fluxes from peatlands have found water table to be 
one among several controls on CH4 emissions across the temperature regimes 
and wetland types that are present at global scale.  At the global scale some 
studies instead found temperature or vegetation to be stronger univariate 
predictors of methane fluxes than water table. 

• Turetsky et al. (2014) (71 wetland sites) additionally found that functional forms 
depended on type of wetland and management. 

• Similarly Li et al. (2024)  (38 wetland sites) found that response of methane 
emissions to water table depth and temperature varied between vascular plant 
wetlands and moss plant wetlands, which differed in both direction and 
magnitude of response to variation in water table depth. 

 

Findings from primary studies  

Studies of GHG emissions at peatland sites post rewetting have indicated that methane 
emissions may increase in the short run following rewetting (Kandel, Elsgaard and 
Laerke, 2017; Schaller, Hofer and Klemm, 2022; Antonijevic et al., 2023; Kalhori et al., 
2024; Delwiche et al., 2025).  In one case the increase in methane dominated, resulting 
in a net increase in CO2 equivalent emissions in the short term (Kandel et al., 2020). 

 Summary Table: Water table findings from meta- analyses 

Table 10  Summary findings from meta-analyses  

Source Geographic 
scope 

Flux measure Water 
Table: CO2 

Water Table: 
CH4 

Overall/ Best Fit Model 

Evans et 
al. 
(2021)  

UK and 
Ireland (16 
sites) 
 
 

Eddy Covariance 
(CO2) 
 
Static chamber 
(CH4) 

linear 
relationship 
R2 =0.9 
 
 
 

exponential 
relationship 
R2 =0.55 

Mean annual effective 
water table depth 
sufficient as single 
predictor both for CO2 
and CH4, including other 
variables did not 
improve predictive 
power. 

Tiemeye
r et al. 
(2020)  

Germany 
(118 sites) 

Static Chamber Approximat
ely linear 
response 
up to -0.4m 

Exponential 
relationship 

- 
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Levy et 
al. 
(2012) 

UK (21 
sites) 

Peat chamber - linear 
relationship 
R2 = 0.15 to 
0.25 

Water table one of 
several environmental 
controls on CH4 and had 
relatively low predictive 
power in comparison to 
other variables when 
assessed as univariate 
predictor.  A species 
composition index found 
to be strongest 
univariate predictor 
where data available, 
peat depth otherwise.  
Parsimonious 
multivariate models 
included soil 
temperature, soil 
moisture and soil 
carbon. 

Lu et al. 
(2017) 

Global (22 
inland and 
21 coastal 
wetland 
sites) 

Eddy covariance Not 
significant 

 Water table was not 
found to be a significant 
predictor of variation in 
CO2 fluxes.  Mean annual 
temperature (MAT) 
followed by Mean annual 
precipitation (MAP) were 
found to be strongest 
univariate predictors of 
annual carbon fluxes 
across all wetland types.  
Their best fit model 
included MAT, MAP and 
an interaction between 
MAT and MAP and 
explained 71% variation 
in GPP and 57% 
variation in NEP. 
 

Zou et 
al. 
(2022)  

Global 
(3,704 site 
years, 1,875 
sites) 

Eddy covariance, 
Static chamber, 
Automatic 
chamber 

  - 
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Wu et al. 
(2025) 

Global (371 
wetland 
observation
s) 
 
 

 

Eddy covariance -0.35 
standardise
d 
coefficient 
in SEM 

-  
Water table depth was 
the most important 
factor regulating 
methane exchange from 
wetlands, while mean 
annual temperature was 
the second most 
important predictor.  
Methane fluxes also 
related to carbon cycle 
measures, GPP, NEE and 
Reco likely due to 
common underlying 
drivers. 

Li et al. 
(2024) 

Global (38 
wetland 
sites) 

Eddy covariance  - 0.47 
standardised 
coefficient in 
SEM 

Water table depth, 
followed by mean 
annual temperature 
most important 
regulators of net 
methane in wetlands. 

Knox et 
al. 
(2019) 

Global (60 
sites) 

Eddy covariance - Moss plant 
wetlands: 
linear 
relationship 
(R2=0.24) 
 
Vascular 
plant 
wetlands: 
(R2= 0.18- 
0.35) 

Li et al. (2024) present 
results from various 
modelling approaches, 
concluding overall that 
response to 
environmental controls 
differs between moss 
plant wetlands and 
vascular plant wetlands, 
which differed in both 
direction and magnitude 
of response to variation 
in water table depth. 

Turetsky 
et al. 
(2014) 

Global (71 
wetland 
sites) 

Static chamber - linear 
relationship 
R2 = 0.31 
(excluding 
sites which 
are 
permanently 
inundated) 

Water table significant 
predictor, however mean 
annual temperature 
strongest single 
predictor. 

 

Meta analysis findings, Water table and CO2  

Drawing on site level measurement of annual GHG fluxes, several recent meta- 
analyses have sought to assess the extent to which differences in water-table depth 
(among other environmental control variables) can explain variation in annual fluxes 
between sites. 

Meta- analyses differed in their geographic scope (UK versus Global) as well as type of 
primary studies included (eddy covariance/ static chamber).  Most looked at evidence 
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for environmental controls on methane, two assessed the evidence for CO2 in addition 
to methane.  None of the reviews identified looked at N2O, or the full GHG balance.  
Summary findings from meta-analyses are presented in Table 10 above. 

 

UK and Ireland 

Evans et al (2021) found a strong linear relationship between water-table depth and CO2 
emissions from UK and Ireland peatlands (16 sites).   Analysing annual flux 
measurements from sixteen eddy covariance studies at sites in UK and Ireland they 
found that net ecosystem productivity (NEP) increased linearly with water table depth.  
They report R2 = 0.9, indicating that variation in WTDe alone between sites explained 
90% of variation in NEP.  Extending this dataset with flux measurements from a further 
49 eddy covariance studies located globally, they found a similar linear and positive 
relationship, though with a lower gradient, and poorer model fit (R2 = 0.65).   

Evans et al. (2021) analysis of variation in annual CO2 flux was limited to eddy 
covariance studies.  Other primary studies utilising peat chamber measurements to 
measure CO2 emissions were not included in their analysis.  We are not aware of any 
meta-analysis which has been conducted of findings from UK peat chamber 
measurements to date. 

Tiemeyer et al. (2020) describe the methodology for determining GHG emissions factors 
from drained organic soils within Germany.  In line with findings within Evans et al. 
(2021) the primary environmental control underpinning German emission factors is a 
national map of water table depth.  Emissions factors draw on a national dataset of 
GHG balances (CO2, CH4 and N2O) from 118 sites across land-use categories and types 
of organic soils.  Fluxes were measured using manual chambers following harmonised 
protocols.  GHG response was statistically analysed in relation to land use category, 
type of organic soil and mapped water table depth.  Other drivers such as soil 
properties, dynamic water table, land use intensity and fertilisation were considered but 
not utilised due to data availability at national level. 

Across their dataset, CO2 emissions increase steeply with increasing water-table depth 
before levelling out at a water-table depth of around -0.4m where additional drainage 
would not on average increase CO2 emissions.  Among shallow drained sites, CO2 
emissions increased almost linearly with deeper water table.  Modelling this 
relationship they fit a Gompertz function.  They found no clear difference in water table 
response across land classes. 

 
Global 
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Lu et al., (2017) conducted a global meta- analysis of CO2 flux measurements from eddy 
covariance studies finding no statistically significant effect of water table depth on 
annual CO2 fluxes, whether assessed as GPP, Reco or NEP.  Data for their study was 
compiled from a literature review in 2014 comprising 143 site years from 22 inland and 
21 wetland sites.  Mean annual temperature (MAT) followed by Mean annual 
precipitation (MAP) were found to be strongest univariate predictors of annual carbon 
fluxes across all wetland types.  Their best fit model included MAT, MAP and an 
interaction between MAT and MAP and explained 71% variation in GPP and 57% 
variation in NEP.  They further observed a positive relationship between leaf area index 
and GPP (R2= 0.53) and leaf area index and Reco (R2= 0.37) however no significant 
relationship was observed for NEP. 
 
A subsequent review by Zou et al., (2022) presents contrasting results.  Zou et al., 
(2022) conducted a global review of wetland GHG fluxes, developing a global database 
(3,704 site years, 1,875 sites) of net wetland GHG fluxes (CO2, CH4 and N2O).  Across their 
global dataset, which encompassed a range of temperature regimes, they find that a 
near surface level water table (-1 to -30cm) minimised GHG emissions, typically 
resulting in a near- neutral GHG flux.  In contrast net greenhouse gas exchange rates 
peaked in flooded and drained conditions. 

Sites were categorised on six levels of water table depth; below (negative number) and 
above (positive) the surface: WTL ≤ –70 cm; –70 cm to –50 cm; –50 cm to –30 cm; –30 
cm to –5cm; –5 cm to 40 cm; and >40 cm.  Sites were further categorised on long term 
average air temperature; boreal (<4oC) temperate (4- 17oC) and tropical (> 17oC).  
Complete records of CO2, CH4 and N2O fluxes were available for 174 site years, enabling 
assessment of the full GHG balance.  The degree of data underpinning other flux 
assessments is not stated, though each draws on the full database of 3,704 site years.   

Assessing net GHG fluxes across all sites they observed a parabolic relationship 
between water table level and net annual GHG emissions (sum of CO2, CH4 and N2O).  
Median net GHG emissions were lowest within the near surface water table level 
category (-30 to -5cm) and increased relative to this within both deeper water table 
categories, and shallower (flooded) categories.  A similar parabolic relationship was 
observed for NEE which was also minimised within the near surface category.  
Meanwhile CH4 and N2O both displayed linear relationships.  Net annual CH4 emissions 
were found to increase across all water table categories, while N2O emissions were 
found to decrease across all water table categories.  The parabolic relationship between 
water table level and net annual GHG emissions was maintained when sites were split 
by temperature regime, though the minimum point was at a higher water table level 
among tropical sites (-5 to 40cm), than for boreal or temperate sites (-30 to -5cm). 
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Meta analysis findings, Water table and methane 

Meta-analysis findings for the relationship between water-table depth and methane 
emissions are overall more mixed. 

UK and Ireland  

Analysing annual flux measurements from 41 static chamber studies in UK and Ireland, 
Evans et al. (2021) found an exponential relationship between water-table depth and 
net methane flux (R2 = 0.55).   Adding additional variables did not improve the model fit.    
They conclude that water-table depth was sufficient as a single predictor of CH4 
emissions. 

Within their analysis of 118 sites on drained organic soils in Germany,  Tiemeyer et al. 
(2020) similarly find an exponential response of CH4 to water-table depth, model fit 
statistics were not however reported.  Among deep drained soils annual CH4 fluxes were 
approximately zero, and increased as water table approached the soil surface.  
Modelling this relationship they fitted an exponential response of CH4 emissions to 
water-table depth. CH4 response to water table was observed to vary across land use 
classes; forest land, cropland and grassland, and unutilised wet organic soils.  
 
In contrast to Evans et al. and Tiemeyer et al., an earlier study by Levy et al. (2012) found 
water-table depth to be but one of several environmental controls on CH4, and that 
water-table depth had relatively low predictive power in comparison to other variables 
when assessed as a single predictor.  Levy et al. (2012) reported that when considered 
as univariate regressors several variables showed reasonably close relationships with 
CH4 flux, particularly soil carbon, peat depth, soil moisture and plant species 
composition.  In relation to other potential control variables however, water-table depth 
was found to explain a relatively low proportion of variation in methane flux (15- 25%) 
when assessed in this way.  They found that water table explained a greater proportion 
of variation in methane flux when assessed at plot level (R2 = 0.25, n= 130 plots) as 
compared to when averaged at the level of each study (R2 = 0.15, n= 10 studies).  
Restricting their analysis to studies where species composition data were available, 
species composition was the strongest univariate predictor.  Otherwise, considering the 
full data set, peat depth was found to be the best single predictor. 

When assessed within multivariate linear specifications, Levy et al (2012) reported that 
parsimonious models included soil temperature, soil moisture and soil carbon, 
however the best combination of these depended on the averaging level (whether 
averaged across plot, sub- site or study).  Meanwhile a model including an exponential 
response to temperature, combined with a power function for soil moisture and a linear 
function for soil carbon provided similar explanatory power to those from best sub- sets 
linear regression. 
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Global 

Wu et al. (2025) conducted a meta- analysis of annual CH4 fluxes reported in peer 
reviewed literature.  Utilising a structural equation modelling framework they assess 
joint controls on net CO2 and net CH4 exchange from peatlands.  They report that water 
table depth was the most important factor regulating CH4 exchange from wetlands, 
while mean annual temperature was the second most important predictor. Among the 
factors tested water table depth (standardised coefficient 0.47), mean annual 
temperature (0.42), mean annual precipitation (-0.18) and ecosystem respiration (-0.10) 
all exerted direct effects on CH4 exchange.  Methane exchange was strongly related to 
carbon cycle measures GP, ER and NEE- CO2, which they surmise is due to common 
underlying drivers, particularly microbial activity, and may also be due to transfer of CH4 
through plant tissue and aerenchyma, as well as plant feeding of microbes in the 
rhizosphere.   

Li et al. (2024) carried out a meta-analysis of environmental controls on methane 
emissions in natural wetlands finding that response to environmental controls differed 
between vegetation types.  Drawing on the flux net database, as similarly used by Knox 
et al. (2019), they evaluate data from 38 sites covering 160 site years. They 
characterised sites as either vascular plant wetlands or moss plant wetlands based on 
primary vegetation type, finding that CH4 response to water-table depth differed 
between the two types of wetlands.  When the water table was below the surface, 
vascular plant wetlands had high CH4 emissions while moss plant wetlands had CH4 
emissions close to zero.  The direction of response further differed with emissions 
increasing as water table lowered among vascular plant wetlands, and conversely 
increasing among moss plant wetlands.  As a univariate predictor water table depth 
explained 24% of variation in emissions from moss plant wetlands and 18- 35% 
variation in emissions from vascular plant wetlands.  

Variance decomposition analysis further indicated diverging environmental response 
between moss plant wetlands and vascular plant wetlands.  Among moss plant 
wetlands, their model was able to explain 88% of variation in CH4 emissions; 
temperature (28.4%) and hydrological conditions (24.9%) best explained CH4 
emissions, followed by soil cation exchange capacity (14.6%).  Among vascular plant 
wetlands, their model was able to explain 56% of variation in methane emissions; solar 
radiation best explained CH4 emissions (41.3%), followed by temperature (19.3%) and 
latent heat (15.8%).   
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Li et al. (2024) further explore direct and indirect effects of environmental controls on 
CH4 though structural equation modelling across all wetland types.  Within their 
structural equation model soil physicochemical properties, water table and 
temperature each had direct effects.  Water-table depth further indirectly affected CH4 
emissions by influencing wetland temperature and soil pH.  

Analysing CH4 flux measurements from 60 global sites within the fluxnet network of 
eddy covariance towers, Knox et al. (2019) assess potential environmental control on 
annual methane flux across sites – controls included biome or ecosystem type, mean 
seasonal water table depth, mean annual soil temperature, and mean annual air 
temperature. At global scale, they report that temperature provided the best predictor of 
CH4 emissions: mean annual soil temperature or mean annual air temperature each 
explained approximately 65% variation in (log transformed) annual methane flux.  
Assessed as a univariate predictor, they find a positive linear relationship between 
water table depth and CH4 flux, however only among sites which are not permanently 
inundated.  When assessed across all sites, no significant relationship was found 
between average water table depth and methane flux, whereas excluding permanently 
inundated sites they find a positive linear relationship. 

An earlier analysis by Turetsky et al. (2014) analysed CH4 measurements from 71 global 
sites identified by literature review in 2009.  In contrast to Knox et al. (2019) most flux 
measurements were taken by static chamber, only four sites were taken by eddy 
covariance.  Turetsky et al. (2014) explored various model specifications and overall 
their analysis identified “general controls on wetland methane emissions from soil 
temperature, water table, and vegetation, but also show that these relationships are 
modified depending on wetland type (bog, fen, or swamp), region (subarctic to 
temperate), and disturbance.”  Water table was found to be a significant predictor within 
several model specifications, however the strength of effect varied depending on 
wetland type and prior management.  An interaction of mean water table depth and 
wetland type was found to be a significant predictor within their best fit model of annual 
CH4 flux, which included water table X wetland type, mean annual temperature X 
wetland type, and mean annual precipitation, and explained 49% of variation in log 
transformed mean flux. 

Suggesting that functional relationships vary across wetland types, when assessed 
across wetland types, Turetsky et al (2014) found that mean water-table position was 
the only significant predictor of CH4 flux averaged by site (R2 = 0.33, F = 28.62, P < 
0.0001; log10 CH4 flux = 2.1 + 0.03x), while within wetland types, mean water-table 
position was a significant predictor of CH4 flux for bogs and poor fens but not rich fens 
or swamps. 
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Using a mixed effects model they further explored whether drainage disturbance alters 
functional relationship between CH4 flux and water table.  The best-fit model of log 
transformed instantaneous CH4 flux included several treatment (drainage vs. pristine) 
effects, suggesting that the same relationships between CH4 flux, water-table position, 
and soil temperature were not adequate for explaining variation in flux across pristine 
and disturbed sites. Excluding the random variable, this final model explained 65% of 
variation in log transformed instantaneous CH4 flux. Using a similar mixed effect 
modelling approach, they find no evidence that functional relationships differed 
between pristine versus flooded sites however, only water table position and soil 
temperature were retained in the final model, which (excluding the random variable) 
explained 40% of log transformed instantaneous CH4 flux across the pristine and 
flooded sites.  

 

Findings from primary studies 

Primary studies were reviewed selectively, with a focus on articles dated post 2020. 

Short term versus long term dynamics post- rewetting 

Studies of GHG emissions at peatland sites following rewetting have indicated that 
methane emissions may increase in the short run.  Among these, longer term studies of 
emissions post rewetting have observed that CH4 emissions can remain elevated for 
some time following rewetting.  In one case the increase in CH4 emissions dominated 
the GHG balance resulting in an increase in CO2 equivalent emissions. 

Measuring the change in GHG fluxes at a rewetted agricultural fen during two initial 
years of paludiculture, Kandel et al. (2020) observed elevated emissions and a net 
increase in CO2 equivalent emissions.  CH4, CO2 and N2Owere measured using static 
chambers, enabling assessment of the full GHG balance.  Average annual CH4 
emissions from both flooded and semi- flooded treatment plots were significantly 
higher than control plots.  The increase in methane emissions dominated the GHG 
balance, resulting in a net increase in CO2eqv emissions in the two years post rewetting. 

Similarly, (Antonijevic et al., 2023) reported a long period of elevated methane 
emissions following rewetting at a two fen sites near Zarnekow in the Peene valley, 
Germany.  Methane emission remained high for 14 years following rewetting, only 
subsiding following the emergence of helophytes.  They hypothesise this occurred due 
to large injection of leaf litter, which more gradual rewetting may have avoided. 

Also studying the Zarnekow peatland site, Kalhori et al. (2024) also reported changes in 
CO2 alongside CH4 emissions over sixteen years post rewetting.  During this time the 
site transitioned from being a CO2 source to a CO2 sink, while methane emissions have 
declined (though to a lesser extent).  Evaluating the time trend of measured emissions 
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they observed that the site level emissions only approached IPCC default emissions 
factors after 13- 16 years.  They further evaluate environmental controls on interannual 
variation in emissions.  At their site interannual variation in CO2 was primarily driven by 
vegetation development (R2=0.62) and soil temperature (R2=0.46).  Water-table depth 
did not significantly control interannual variation in methane.  They surmise this was 
due to high water table at their site which generally remained above soil surface.  One 
severe drought year in 2018 provided an exception.  Following this both annual 
cumulative and daily median CH4 emissions dropped sharply in 2019. 
 
Schaller et al. (2022) measured GHG exchange at a peatland in Uchte, NW Germany 18 
years after rewetting, finding the peatland was still a significant GHG source 18 years 
post rewetting.  While the site remains a net source, emissions at the study site were 
lower than IPCC emissions factor for a peatland recently drained for peat extraction. 
The study site was an oligotrophic raised bog, drained for peat extraction in the 1950s 
and rewetted in 1999.  GHG fluxes (CO2, CH4 and N2O) were measured by eddy 
covariance tower over 18 months in 2016 and 2017.  Applying 100 year GWP conversion 
factors they estimate the balance of CO2, CH4 and N2O as +500 ± 120 g CO2-equiv m−2 
a−1 in 2017.  Among this CH4 dominated, contributing 78% to the flux.  Further including 
measurement of O3 (net cooling effect), resulted in a slightly smaller estimated flux of 
+430 ± 120 g CO2-equiv m−2 a−1.  Within this 18 month measurement period observed no 
significant response of CH4 to variation in water-table depth (further investigation of 
environmental controls on emissions to follow in subsequent work).   

Delwiche et al. (2025) analysed fourteen years of (near continuous) eddy covariance 
data from a flux tower located in the Mayberry wetland California.  Following rewetting 
in 2011, annual methane emissions spiked in 2012, reaching 63.3 g C m-2 yr-1.  Since 
2012 methane emissions declined, reaching 10.6 g C m-2 yr-1 in 2023.  Reco showed a 
similar trend.  Water-table depth was relatively constant for the first five years but then 
experienced frequent pronounced drops due to abstraction.  Vegetation ingrowth 
rapidly occurred, with open water dropping from 70% to 40% between 2012 and 2014.  
Developing a random forest model they explore drivers of the observed decline in 
methane flux.  The most important predictors were vegetation coverage, followed 
closely by sediment temperature, while latent temperature, water table depth and Reco 
had lesser importance.   

Bockermann et al. (2024) found contrasting results.  Evaluating the effect of rewetting 
and warming on greenhouse gas emissions from intensive and extensive grasslands in 
Germany, they found that rewetting and use as Carex paludiculture resulted in net- sink 
within the first year.  Dynamic and static chambers were used to measure CO2, CH4 and 
N2O enabling assessment across the full greenhouse gas balance.  Rewetted plots were 
observed to have lower NEE, greater CH4, and lower N2O (though N2O higher than 
expected).  When considering the full GHG balance rewetted plots were found to have 
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substantially lower emissions than drained.  Emissions further depended on crop 
treatment with rewetted plots on extensive grass becoming a net sink.  Plots under 
warmed treatment (closed chambers) were observed to have greater emissions 
reduction potential. 

Hei et al. (2025) compare NECB between a recently rewetted minerogenic peatland and 
two undisturbed fen mires in Northern Sweden over the first three years post rewetting, 
integrating eddy covariance measurement of CO2 and CH4 exchange along with 
estimates of dissolved C to export to estimate NECB.  The rewetted peatland was found 
to be a net source with a mean annual NECB of +77  (±34) g C m−2 year−1 over the initial 3 
years following rewetting.  In contrast, nearby undisturbed mires were nearly C neutral 
or a net sink.  Net CO2 emissions declined by about 50% over the three years, while 
annual CH4 emissions steadily increased year on year but remained at about half that of 
the undisturbed mire in the third year.  CO2 and CH4 response functions further differed.  
Half hourly Reco showed a stronger response to temperature, while (daily) CH4 showed a 
weaker response to temperature as compared to natural mire sites.  The observed 
reduction in net CO2 emissions during first three years was largely due to an increase in 
GPP rather than a reduction in Reco.  The seasonal and interannual pattern of GPP 
increase further corresponded with NVDI suggesting that the change resulted from 
response of vegetation to rewetting.  Changes in biomass were not recorded, however 
they observed an increase in cottongrass abundance.  Contrastingly, annual Reco 

remained similar over the three years, suggesting that an increase in autotrophic 
respiration due to increasing plant growth, counterbalanced the (likely) reduction in soil 
heterotrophic respiration due to wetter soils. 

Ratcliffe et al. (2020) measured CO2 emissions at a drained New Zealand peatland 
finding that emissions had decreased relative to measurement sixteen years prior and 
that the site had transitioned to being a C-sink. During the 19th C, Moanatuatua was 
around 7,500 ha in size.  Drainage for pasture began in 1930s and by 1979 the bog 
reached its current size of around 140 ha, less than 2% of its original extent.  Water table 
measurements in 1976 and 1977 showed water table to be close to the surface, varying 
0.8cm to 3.8cm below the surface.  Repeat measurements in 1995 indicated a sharp 
decline in water table, reaching -60cm in summer 1994 and -65cm in 1995.  Within their 
four measurement years summer water table depth ranged 20cm to 1m (approx), with 
20cm reflecting an anomalous wetter summer with high precipitation, within the other 
three years summer water table depth ranged 75cm to 1m.  Measurement of CO2 by 
eddy covariance was conducted over two periods, first in 1999 and 2000, then in 2016 
and 2017.  Measured NEP was much greater in the recent monitoring period.  During 
1999 and 2000 the bog was a C source, yet by the later period of measurement in 2016 
and 2017 the bog had become a C sink.  The reduction in emissions was primarily due 
to greater C uptake by GPP and to a lesser degree resulted from lower C emissions from 
respiration.   
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Contrasting findings on environmental controls 
 
Heiskanen et al., (2021) found that drier (deeper water table) Finnish sub-arctic fens 
were larger CO2 sinks than wetter ones, contradicting the results of Evans et al. (2021). 
Further contradicting UK results, Heiskanen et al. (2021) found  using daily flux tower 
measurements that Green Chromatic Coordinate (GCC, an optical measure greenness 
investigated in later sections) was a more important predictor of both Net Ecosystem 
Exchange (NEE) and Gross Primary Production (GPP) than water table, with fixed effect 
models explaining 34 and 64% of the variations respectively. Differences between the 
peat bogs of Evans et al. (2021) and fens of Heiskanen et al. (2021) are explained by the 
nutrient status and plant community. The nutrient-poor acidic peat bogs likely limit 
rates of photosynthesis under dry conditions, and the specialist species are not 
adapted for water-limited conditions, decreasing rates of photo synthesis. Additionally, 
the drier conditions exposes the organic-mater to microbial consumption, increasing 
carbon loss.  On the other hand, fens are relatively nutrient rich and pH neutral to alkali, 
containing vascular plants and photosynthesis dominating the carbon balance 
(Nielsen, Elsgaard and Lærke, 2024). Lowering the water-table depth can increase rates 
of photosynthesis (possibly by improved oxygen transport around roots) but not cause 
water limiting conditions due to the deeper roots of the vascular plants. These 
contradictory results suggest that water table depth may not be the sole-driver of CO2 
flux in all peat conditions and that nutrient status and ground cover of certain peat 
classifications (e.g. extensive/intensive grass) may need to be considered along-side 
water table depth to accurately determine GHG emissions.  

Heiskanen et al. (2021) found that soil temperature was the best indicator of daily 
methane flux from Finish fens, followed by water table depth and leaf area index metrics 
having similar weightings in their linear model. However, environmental controls on 
daily emissions at a single site may be expected to differ from environmental controls 
on annual emissions between sites, and the UK and Ireland climate is overall more 
temperate.  Additionally, because the model of Heiskanen et al. (2021) does not include 
an exponential relationship between water table depth and methane flux, it may lose 
some explanatory power. Therefore, these results do not necessarily contradict the 
dominance of water table depth on annual methane flux found by Evans et al. (2021).  

 
Cultivated peat 
 
Two recent studies among cultivated peatlands report similar findings to Evans et al. 
(2021), while another found no effect of water table depth on estimated carbon budget. 
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Heikkinen et al. (2024) measure CH4 and CO2 fluxes in a cultivated peatland in Finland 
over three growing seasons, finding that CO2 emissions decreased linearly as the water 
table increased, while CH4 emissions increased, though remained comparably 
insignificant relative to CO2.  Their study design featured two drained and two undrained 
plots equipped with control wells, fluxes were measured using static chambers. They 
found an approximately linear relationship for CO2 emissions and water table.  CO2 
increased as water table became deeper, though with indication of a levelling off which 
they hypothesise was due to soil temperature gradient in relation to depth.  Observed 
monthly CH4 fluxes ranged from negative to positive but insignificant, being two orders 
of magnitude below those for CO2.  From classification tree modelling they suggest that 
“risk for CH4 emissions increases when water level is less than 30 cm from the soil 
surface and [soil water content] exceeds the threshold value of 0.6 m3 m-3.” Though 
noting that estimates are site-specific and depend on the peat type, degree of peat 
decomposition, and soil compaction. 

Boonman et al. (2024) evaluated the effect of subsoil irrigation and drainage on CO2 
emissions from peatlands used for dairy farming in the Netherlands, finding that sites 
with higher water table had reduced annual average CO2 eq. emissions.  Emissions 
were measured over three years by both peat chamber and eddy covariance, enabling a 
comparison of measurement techniques.  Sites with subsoil irrigation and drainage 
were generally observed as having lower cumulative CO2, though with one anomalous 
site year where the CO2 flux from the (wetter) sub soil irrigation  site very slightly 
exceeded those from the control.  A similar pattern was observed when additionally 
accounting for C import (manure) and C export (harvesting) to measure Net Ecosystem 
Carbon Balance (NECB).  They further observed a relationship across subplots between 
mean summer water table depth, NEE and NECB.  NECB as measured by Eddy 
Covariance and Automatic Chambers showed overlapping confidence intervals when 
accounting for C import (manure) and C export (harvesting)). 

Nijman et al. (2024) investigated the effects of drainage on carbon budgets on thirteen 
degraded peatlands used for grazing in the Netherlands finding no effect of water table 
depth on estimated carbon budget.  Sites were selected across different water table 
depth (WTD), drainage-irrigation management, and soil moisture.  NEE was measured 
over two years in 2021 and 2022 using automated chambers 1 to 2 times per month, for 
2 to 3 days each measurement campaign.  Remaining days were gap-filled using a 
random forest model.  Contrary to expectation they found no relationship between 
variation in WTD and annual C budget.  Variation in C budgets was also independent 
from drainage-irrigation management.  Shallow drained and deep drained had similar C 
budgets and sites with irrigation did not have statistically lower C budgets than control 
sites. 
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9.7 Spectral earth observations 
The search terms yielded 129 hits in the Web of Science Database and an additional 
102 hits in the SCOPUS database. Two further articles were identified through cross- 
citation.  Of the 231 unique articles, 36 were deemed suitable for further reading after 
reading the abstract after prioritising articles published after 2020. 

Key Findings: Spectral earth observations, CO2 and CH4 

• Large number of studies using earth observations to estimating GPP, less 
estimating NEE and even less estimating methane emissions from peat. 

• Due to their nature of measuring reflected solar radiance or light emitted by 
plants (florescence) earth observations are good at accurately estimating GPP (i.e. 
rates of photosynthesis.) in peat across several climates. 

• Generally, additional variables such as temperature and less-often water 
conditions are required for accurate estimates of GPP. However, there are cases 
when temperature and water conditions do not vary, either because of limited 
spatial variability or short measurement duration, and spectral earth 
observations alone are a good predictor of GPP. 

• Like with GPP, temperature is an important additional variable when making 
predictions of NEE  (Microbial and plant respiration minus GPP). Land Surface 
Temperature (LST) can be determined from earth observations at approximately 
± 2 K in (general) making it easy to include as an additional variable in models. 
However, temporal frequency of measurement is low and temperature is a 
snapshot when satellite passes over the area and may not be representative. 

• Predictions of NEE with earth observations are less accurate than GPP since 
water-table depth is a major controller of bacterial respiration in peat and is 
difficult to accurately measure from earth observations.  

• To overcome this issue, attempts have been made to use reflected earth 
observations to detect drought stress in the vegetation as a proxy for WTD to 
varying degrees of success. Short time-scale studies looking at sub-daily 
changes in NEE have good agreement with EC measurements whereas longer-
scale studies find this approach cannot capture seasonal changes in water table 
depth resulting in usually poor approximations of NEE. 

• Hyper-spectral observations of light emitted from plants during photosynthesis 
(SIF) provides a more direct measure of photosynthetic activity that can partially 
account for temperature and moisture stress effects on GPP, potentially 
reducing the need for ancillary data. However, it remains limited by retrieval 
noise in peatland environments and does not capture respiration components 
required for NEE estimation. 

• Methane emissions are less often approximated with earth observations. Like 
NEE, these fluxes depend heavily on water table depth which are hard to 
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approximate remotely. Best attempts to measure methane emissions using 
earth observations use meteorological data as additional variables to 
approximate soil/peat moisture conditions, often finding that the meteorological 
rather than spectral observations are the main driver of methane emissions.  

• Models of methane tried to capture ebullition events indicating that more 
auxiliary (microtopography/InSAR) data may be needed to improve estimates.  

 

Gross Primary Production (GPP) 

Earth Observations  are inherently suited for predicting GPP (rates of photosynthesis), 
often achieving high accuracy, but generally require additional variables like 
temperature and water conditions. Studies using various Earth Observations platforms 
and indices demonstrate good performance in predicting GPP. MODIS GPP was the 
strongest predictor of EC-derived GPP in northern peatlands, explaining 68% to 89% of 
the variation (Kross et al., 2013). Higher resolution data from Landsat (R² 0.53–0.69) 
outperformed lower-resolution MODIS (R² 0.40–0.63) in predicting GPP in wetlands 
(Cao et al., 2025). Finer temporal and spatial resolution approaches, like camera-
derived GRVI (R² = 0.96) or UAV/Phenocam VIs (R2s > 0.70), showed strong correlations 
with GPP, often outperforming coarser satellite products in capturing seasonal 
dynamics (Gatis et al., 2017; Simpson et al., 2025). 

Generally, additional variables are required to make good predictions of GPP, as 
spectral observations alone often struggle to capture non-light limitations. A model 
using Photosynthetically Active Radiation (PAR) (measured on the ground), temperature, 
and water table depth (WTD) achieved an R² of 0.85 (Albert-Saiz et al., 2025). 
Cumulative air temperatures were used alongside solar radiation to mollify GPP, 
achieving an R² of 0.94 across several sites (He et al., 2025). One study found that a 
combined metric of a red-edge chlorophyll index and 90-day-average rainfall (as a WTD 
proxy) was the best linear predictor of GPP, with an R² of 0.93 (Spinosa, Fuentes-
Monjaraz and El Serafy, 2023). A Random Forest model for Gross Ecosystem 
Productivity (GEP/GPP) included spectral bands, VIs, LST, air temperature, shortwave 
radiation, and soil moisture achieved an R2 of 0.76 across multiple drained peatland 
sites (Khan et al., 2025). However, in cases of limited temporal or spatial variability, 
such as during the peak growing season in a Scottish peatland, meteorological 
conditions (temperature and WTD) rather than vegetation greenness have been found to 
control GPP (DuBois et al., 2018). WTD and temperature were identified as the key 
controls on Light Use Efficiency (LUE) in northern peatlands (Wu et al., 2020). 

Hyperspectral observations of Solar-induced Chlorophyll Fluorescence (SIF), for 
example, can provide a more direct measure of photosynthetic activity. SIF is a glow of 
light produced as an inefficiency of photosynthesis, and thus reduces when factors like 
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water or nutrients limit photosynthesis, potentially reducing the need for ancillary data 
(Balogun et al., 2023). Hyperspectral imagery improved GPP prediction performance 
(adjusted R² = 0.71) and reduced bias compared to broadband MODIS GPP (adjusted R² 
= 0.68), with the improvement potentially due to capturing plant physiological effects 
without relying on external meteorological inputs (Dubois et al., 2018). Ground-
measured SIF could predict GPP with high accuracy (R² = 0.98) over 16-day aggregates 
(Buareal et al., 2024). SIF was found to be a better indicator of NEE than EVI in Canadian 
peat bogs, although the difference in RMSE was modest (0.51 vs 0.53 µmol CO₂ m⁻² s⁻¹) 
(Balogun et al., 2023). SIF remains limited by signal-to-noise ratios due low photon 
fluxes and cannot fully capture soil respiration components required for NEE estimation 
(Balogun et al., 2023). The marginal improvement in GPP estimations with hyper-
spectral sensors may not always be worth the reduced spatial resolution to capture 
more flux in certain peat use-cases. 

Net Ecosystem Exchange (NEE) and Water Table Depth (WTD) 

Predictions of NEE with spectral EO are less accurate than GPP primarily because WTD 
is a major controller of bacterial respiration and is difficult to accurately measure 
remotely. Neither MODIS NDVI nor MODIS SR performed well at predicting NEP (–NEE), 
explaining only 25% to 53% and 29% to 39% of the variation, respectively (Kross et al., 
2013). A machine learning model predicting GEP/TER/NEE achieved an overall R² of 
0.79, but noted high RMSE compared to other studies (Khan et al., 2025). However, the 
study only used one site for model validation and did not account for autocorrelation 
indicating the possibility of over-fitting so the model cannot be generalised across sites.  
Like with GPP, Land Surface Temperature (LST) can be determined from EO in NEE 
models and is an important additional variable when making predictions (Khan et al., 
2025). 

Attempts have been made to use reflected EO VIs (e.g., LSWI, MWI, NDWI) as a proxy for 
WTD or peat moisture in  models of NEE by measuring vegetation drought stress (Xiao et 
al., 2004; Junttila et al., 2021). Short time-scale studies looking at sub-daily changes in 
NEE using satellite-derived WTD showed good agreement, with R² up to 0.92 over a 3-
month period (Balogun, Bello and Higuchi, 2023). The Modified Water Index (MWI) used 
as the sole predictor of NEE found strong correlations (R² between 0.6 and 0.78) over 
several years (Kalacska et al., 2018). However, these proxies are effective  under 
conditions corresponding to the onset and peak of vegetation water stress and are often 
inaccurate proxies for WTD estimation outside these conditions (Kalacska et al., 2018; 
Balogun, Bello and Higuchi, 2023). For example, hyperspectral NDWI1240 performed 
well at predicting WTD in ranges between ~-30 -40 cm but could not predict WTD in 
summer months where WTD was lower (Kalacska et al., 2018). Longer-scale studies 
show that this approach cannot capture seasonal variation in WTD across all peatland 
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types, resulting in poor yearly estimates of NEE (e.g., R² = 0.36 using LSWI and 
temperature in Swedish and Finnish peatbogs (Junttila et al., 2021). 

 

Methane (CH₄) Emissions 

Methane emissions are less often approximated with Earth Observations than CO₂ 
fluxes and depend heavily on WTD. Best attempts use meteorological data as additional 
variables to approximate soil/peat moisture conditions, finding that these auxiliary data 
are the main drivers (Watts et al. 2014). Watts et al. (2014) used satellite data alongside 
reanalysis data from MERRA (which includes soil moisture estimates) to model CH₄ 
fluxes based on temperature, soil moisture, and soil carbon. MERRA data accounted for 
approximately 75% of variation in CO₂ and CH₄ fluxes. SIF, argued as a proxy for 
substrate, only modestly increased the R² from 0.75 to 0.76 in a linear model already 
containing soil temperature and WTD (Buareal et al., 2024). Watts et. al., (2014) model 
of CH4 flux included features of gas transport and ebullition the peat, indicating that 
more auxiliary (microtopography/InSAR) data may be needed to improve estimates. 

 

Summary Table: Spectral Earth Observations Literature Review 
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Table 12: Spectral earth observations literature review summary table 

Study Site Type Carbon 
Metric 

Proxies R2 CO2 data Spectral data Other variables 

Khan et al. 
(2025) 

Agricultur
al 
peatlands 
in East 
Anglia 
England 

NEE NDVI, EVI, 
NDMI among 
other 
predictors 
 

0.87 (Grass) 
0.66 (Crops) 
0.64- 0.89 (across 
sites) 

EC Landsat and 
Sentinel 2 (at 30 m 
resolution) 

Land surface temperature 
estimated from Landsat data.  No 
water table depth measurement 
but uses daily  soil moisture 
product produced by CEH. 
 

Cao et al. 
(2025)  

Ten 
ecosyste
ms within 
fluxnet 
 
 

GPP Various 
vegetation 
indices** 

0.40- 0.69 (Wetlands) 
 

EC Landsat (30m) and 
MODIS (500m) 

 

He et al., 
2025 

Canadian 
northern 
peatbogs 

GPP Various 
vegetation 
indices 

0.94 EC MODIS EVI and 
NDVI 

Temperature dampens VI derived 
GPP 
 

(Buareal et 
al., 2024) 

Japanese 
Peat 

GPP and CH4 Ground 
measured SIF 

GPP=0.93 to 0.93 
CH4 = 0.77 

EC Ground based GPP – only SIF. CH4 Temperature 
and WTD. Non-linear model. 

Gariosain et 
al. (2024)  

Pyrenean 
mountain 
peatland 

GPP 
Reco 
CH4 

Chlorophyll 
index 

GPP= 0.69 
Reco= 0.84 
CH4 = 0.59 

Static 
chamber 

Sentinel 2 Site measurement of water table, 
DOC. Temperature site and 
reanalysis. 

(Balogun, 
Bello and 
Higuchi, 
2023) 

Canadian 
peatland 

NEE SIF + various 
VI including 
EVI 

0.92-0.98 EC MODIS and OCO2 Temperature. R2 for Diurnal NEE  

(Junttila et 
al., 2021) 

Swedish 
and Finish 
peatland 

GPP + NEE NDWI,EVI GPP=0.7, NEE=0.36 
 

EC Sentinel-2 and 
MODIS 

Temperature (MODIS-LST) 

(Lees et al., 
2021) 

Scottish 
peatland 

GPP NDVI Chamber= 0.57-0.71, 
EC= 0.76-0.86 

EC 
+Chamber 

MODIS Temperature (MODIS-LST) 
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(Kalacska et 
al., 2018) 

Canadian 
peatland 

NEE +WTD MWI and 
hyperspectral 
NDWI1240 

WTD=0.79, 
NEE=0.68-0.78 
 

EC Airborne  None 

Dubois et 
al. (2018) 

Various 
ecosyste
ms across 
California, 
forests, 
grassland 
savannas, 
wetlands 
and 
shrubland 

GPP Hyper 
sepctral 
signals 

0.71 EC hyperspectral data 
(VSWIR, 400–
2,500 nm) 

 

Gatis et al. 
(2017) 

Drained 
peatland 
in Exmoor, 
England 

GPP GRVI 0.96 (camera) 
0.79 (MODIS) 

Static 
chamber 

Digital camera, 
MODIS 

 

Watts et al. 
(2014) 

Six sites in 
Russian 
and 
Eurasia  

CO2 and CH4 LUE model 
using 
reanalysis 
data from 
MERRA  
And  
MODIS GPP 

0.75 
 
 
 
0.69 

EC MODIS 
MERRA 

Soil moisture and surface 
temperature estimates obtained 
from MERRA archive, gridded at 
1/2 × 2/3◦ spatial resolution. 

Kross et al. 
(2013)  

Raised 
ombrotro
phic bog, 
Moderatel
y rich 
treed fen, 
Open 
minerotro
phic 
moderatel
y rich fen, 

GPP 
 
 
NEP 
 

MODIS GPP 
  
MODIS GPP 
 

0.68- 0.89 across 
sites 
 
0.43- 0.75 across 
sites 

EC MODIS  
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Mesotrop
hic sub-
arctic 
poor fen 
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9.8 Erosion 
The search terms yielded 4 hits in the Web of Science Database and an additional 4 hits 
in the SCOPUS database. Of the 8 unique articles, 2 were deemed suitable for further 
reading after reading the abstract. The lack of hits in the erosion literature search is due 
to the necessity that papers included a direct measurement of direct GHG emissions, 
Error! Reference source not found.. These search terms were designed to capture on-
site emissions while carbon lost from erosion as POC/DOC is mostly emitted off-site. 
The criteria were intentionally strict to ensure that the evidence would be defensible 
within a tax-dispute context and to limit paper-count within this short project. Indeed, 
removing this restriction yields over 200 papers in the WOS database which were not 
possible to review in this project. 

 Five excluded papers considered CH4 isotopic ratios to investigate aerenchyma flux 
pathways which discriminates 13C-CH4  (Marushchak et al., 2016). The two relevant 
papers used 210Pb to date soil layers and thus determine rates of organic-matter 
accumulation (Adkinson, Syed and Flanagan, 2011; Arias-Ortiz et al., 2021). Arias-Ortiz 
et al., (2021) could estimate organic carbon accumulation rates and show that the 
majority of organic carbon in a Californian marshland was fixed since restoration 
activity. Unlike measurements of NEE with EC, carbon accumulation rate in this context 
includes fluxes of CH4 and NEE as well as carbon lost as DOC and POC.  By comparing 
carbon accumulation measurements with EC measurements Arias-Ortiz et al., (2021) 
argued they could estimate carbon loss via DOC and POC. We recommend caution with 
this interpretation since errors or site-dependent topography variations in EC 
measurements could easily be attributed to erosion. Additionally, unquantified errors in 
210Pb dating likely do not co-vary with EC errors due to differing methodological 
principles. Similarly,  Adkinson, Syed and Flanagan (2011) used ²¹⁰Pb peat dating to 
quantify long-term carbon burial and compared those results with EC-derived NEE to 
test whether GPP (short-term carbon sink) translates into actual long-term peat 
accumulation. They find that the two measurement approaches yield the same 
qualitative results regarding two contrasting Canadian peatlands but are more cautious 
and do not interpret quantitative differences between the two measurement modes as 
DOC or POC loss. 

Using 210Pb dating to determine rates of organic carbon-accumulation/loss in peat could 
be a useful monitoring tool to determine success of restoration activity. Unlike EC, this 
measurement is indicative of gaseous and POC/DOC loss/gain and could help capture 
more of the peat GHG balance. 

The IPCC wetlands supplement offers Tier 1 emissions factors for DOC based on 
concentrations found in rivers and drainage waters by assuming that 90% of DOC is 
oxidized to CO2 but offer no emissions factors for POC (Hiraishi et al., 2014). The mass 
of DOC is derived from climate-based Tier 1 emissions factors for drained peatland 
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only. To include DOC emissions, the UK National Inventory used long-term data from 
POC monitoring and assumed 100% of POC oxidises to determine emissions factors 
per area of bare peat (Evans, C. et al., 2017). Direct measurement of erosion-derived 
emissions is rarely (never?) available, emissions accounting must therefore rely on 
proxy measurements (DOC/POC loads in drainage) and emission conversion 
assumptions which introduce substantial uncertainty. Methodologies to measure 
DOC/POC loads are outside the scope this study but will be required to capture the full 
GHG balance in eroded peat. Evidence from a meta-analysis suggests that DOC loss is 
correlated with WTD in peat bogs but not fens (Xu et al., 2023). It may be possible to 
determine DOC losses based on WTD and use emissions factors to convert to CO2 and 
CH4 emissions downstream.  However, we can conclude that in any GHG-tax, 
emissions estimates for eroded peat must be treated as conservative due to the lack of 
direct link to measured emissions. 
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