Delivering robust measurement pathways
for a Scottish carbon land tax: an evidence
review and feasibility study

LUNZ Hub Calldown 26

Mark S Reed’, James Glendinning', Klaus Glenk?, Alistair McVittie', Nick Millard?,
Charles Cowap?, Rosie Gearey', Jack R Brennand*, Simon Carr*, Daniel Fletcher®

"Scotland’s Rural College, Edinburgh, UK
2Henley Business School, University of Reading, Reading, UK
3Independent Rural Chartered Surveyor, Harper Adams University, Newport, UK

“4Institute of Science and Environment, University of Cumbria, Ambleside, UK

SRUC

b il I , D
% UK Research f[()xepartmem Department for W Scottish Government
Environment i 2 i . -
and Innovation e airs mSecumv ey — . Riaghaltas na h-Alba :

This project was funded by the Land Use for Net Zero, Nature and People Hub’s Agile Policy Centre. The Hub is part of the
Transforming Land Use for Net Zero, Nature and People (LUNZ) programme co-funded by UKRI, the Department for the Environment,
Food and Rural Affairs (on behalf of England and Wales), the Department for Energy Security and Net Zero, the Department of
Agriculture, Environment and Rural Affairs of Northern Ireland, and the Scottish Government.



1. Executive summary

Implementing a carbon land tax faces key measurement and administrative challenges.
Accurate quantification of emissions from peat, requires reliable methods that reflect
real fluxes while managing uncertainty transparently. Spatial and temporal resolution
must be sufficient to attribute emissions fairly to individual landholdings and capture
changes arising from management and climate. The system must incentivize emission-
reducing practices equitably across diverse land tenures, ensuring accessibility for
smaller or resource-limited landowners. Transparency, clear compliance procedures,
and robust dispute resolution are essential to maintain credibility, fairness, and public
trust.

Current national emission-factor approaches used in the UK Greenhouse Gas (GHG)
Inventory do not provide sufficient precision and spatial accuracy for taxation at the
level of individual holdings. This report therefore evaluates whether a peat-based
carbon tax could be made scientifically robust and administratively credible, balancing
environmental ambition with fairness and feasibility based on current methods and
research evidence. Differences in peat condition, management and access can
produce unequal emission outcomes, and if measurement systems fail to reflect this
variation they risk appearing arbitrary. Complex or opaque monitoring requirements
could impose excessive costs and erode legitimacy, especially for smaller or less
technically equipped landholders.

Alternative configurations of existing measurement methods highlight clear trade-offs
between accuracy, cost, spatial resolution and administrative burden in a land
emissions carbon tax. Although potentially most cost-effective to run (total annual
operating cost £42,000 for a 250,000 ha), model development costs for purely remote-
sensing approaches would be costly (as much as £3M). Moreover, these methods are
not yet reliable enough because water-table depth, a key controlon CO, and CH,
emissions, cannot be inferred remotely with sufficient confidence at parcel scale,
creating a risk of misestimated liabilities. Introducing ground-based water-table
measurements (dipwells) materially improves accuracy and responsiveness to
management and restoration, but installation, maintenance and quality control become
costly (estimated upfront costs of £11.3m and annual operating costs of £513k for 250K
ha). However, costs are sensitive to dipwell density, servicing frequency and sensor
costs. New sensor-development work by CEH could materially reduce capital costs
without weakening the evidential standard, by lowering per-unit sensor costs while



retaining the higher-specification performance needed for audit and appeals; under the
report’s assumptions, reducing unit cost from £518 to £100 would lower installation
costs by around £4.2m for a 250,000 ha rollout, all else equal. Additional measures (for
example, soil testing for N,O or hyperspectral data for photosynthetic uptake) provide
marginal gains in terms of completeness, with associated additional costs and
complexity. A further source of uncertainty is the national peat extent and condition
baseline, which contains omission and commission errors at the scale of individual
holdings.

The report concludes that current methods do not yet provide the accuracy, fairness or
transparency required for a nationally applied, emissions-based peatland land tax
without significant cost, and that any move towards implementation should therefore
be accompanied by further evidence-gathering and testing. In light of these risks and
uncertainties, three steps are proposed (Table 1), starting with additional research and
progressing through phased pilot approaches targeting the highest-emitting peat types,
followed by the piloting of water-table based measures, exploring approaches to reduce
costs and improve the scalability of these types of measurement, alongside piloting of
administrative procedures. We conclude that (Table 1):

e The lowestimmediate-risk approach is to prioritise the commissioning of
targeted research and improving national screening layers before any live
liabilities are applied, given the current constraints on accuracy and the
potential for dispute.

e Limited piloting could still be proportionate if designed to manage risk and cost
through sequencing, beginning with a narrow pilot focused on bare, actively
eroding peat where verification is comparatively straightforward and lower-cost.

e After evaluation of the research and initial pilot findings, piloting could progress
to a WTD-based approach for drained or modified peat, recognising that this
phase carries materially higher operational complexity, dispute exposure and
monitoring costs (driven largely by dipwell/logging requirements).

This sequencing would limit initial cost and risk, target the highest emitting and most
visible class first, and allow the WTD-based system to be piloted and refined before
wider application. In parallel, integration with wider carbon-pricing instruments such as
the UK Emissions Trading Scheme could be explored as an alternative route to a land
emissions carbon tax. Actioning the steps outlined in this report needs to balance
messaging to the land management community (given evidence that proposals to
introduce a similar tax in Denmark are already influencing decisions to sell peatlands to
avoid future liabilities) with the risks of piloting a tax using methods that are known to
have significant limitations, potentially undermining the legitimacy of a future tax.



Table 1: Proposed three-step sequencing for assessing and piloting a peatland emissions carbon tax

Step

1: Further
research

2: Initial
pilot

Description Pros

A programme of research to close key technical
evidence gaps, including:

e Calibrating water-table—flux response
functions for Scotland’s main peat types
using long-term chamber and eddy-
covariance data;

e Determining parcel-scale minimums for
dipwell/piezometer spacing, logger
frequency and QA procedures relative to
site features such as slope breaks and
drainage features;

e Building national screening layers of peat
extent and condition with pixel-level
uncertainty suitable for setting default
liabilities; and

e Investigating options for improving remote
inference of water-table depth, for
example, by integrating ground-
penetrating radar (GPR), InSAR and SAR,
LiDAR and optical indices, supported by
targeted ground-truthing using low-cost in
situ measurements (including redox
potential (eH)) to provide contextual
information on oxygen availability and
persistent saturation, and, where
appropriate, citizen-science approaches
to increase spatial coverage.

Directly targets key
feasibility constraints
(accuracy, fairness,
transparency at holding
scale) before liabilities
are set; strengthens the
technical basis for any
later rollout by improving
calibration, mapping
baselines and uncertainty
handling.

An initialpilot could apply only to bare and
actively eroding peat, by publishing an eroding-
peat layer with pixel-level uncertainty to set
default liabilities, using low-cost visual
verification to confirm status and change.

Targets the highest

class first, with
comparatively
straightforward evidence

Cons

Delays any behavioural

signal from taxation while

evidence gaps are
closed; does not test
operational issues
(verification, audit,
appeals) under live
conditions.

Covers only a subset of

emitting and most visible peat emissions; does not
address emissions from

drained/modified peat
until later; selective

Risk profile

Lowest immediate
implementation risk (no
live liabilities based on
weak methods), but
continued exposure to
risks identified in the
report if later steps
proceed without
resolving identified
uncertainties.

Key risks are
misclassification and
contestation at holding
scale due to map
omission/commission

Costimplications

Research and data-
development costs
could be
commissioned or
integrated into
Scottish
Government’s next
Strategic Research
Programme and
reduce later
compliance and
dispute costs by
improving baselines
and response
functions.

Lower monitoring
costs than WTD-
based approaches
(desk-based
screening and



Step

3: Expand
pilot to
drained or
modified
peat

Description

Challenges would rely on, for example, recent
orthophotos or UAV imagery, repeat UAV/LiDAR
surface models showing reduced roughness
and infilled haggs/gullies, and dated,
georeferenced records of stabilisation works. A
focus on surface roughness and erosion is
supported by sub-surface structural evidence
showing bare peat is associated with
hydrophobic surface layers and loss of fine-
scale pore structure and microtopography
(Brennand, 2025), conditions likely linked to
enhanced runoff, drainage efficiency, and

elevated carbon loss.

Subject to evaluation of accuracy (discussed in
this report) and dispute rates and administrative
cost (a subject of future research), the pilot
could expand to drained or modified peat using
water table depth (WTD) measurements for
verification. Defaults could be set from national
screening layers and adjusted using rolling
multi-year WTD evidence collected to a
published minimum standard; uncertainty could
be treated explicitly through confidence
thresholds for desk screening, targeted review
or field checks, published intervals for parcel
estimates, and predefined discounts where
uncertainty is material, alongside clear appeal

routes.

Pros

and change detection;
avoids upfront
dependence on WTD
measurement networks,
while allowing

verification/audit/appeals
processes to be tested in

a bounded scope.

More responsive to
management and
restoration than class-
based approaches
because WTD is
identified as the most
informative driver;
supports a structured
uncertainty framework
(thresholds, intervals,
predefined discounts)
that can improve
transparency and
adjudication.

Cons

scope raises equity and

Risk profile
errors and boundary

fairness questions within effects.

wider taxation principles.

High complexity and

technical burden relative

to most taxes; depends
on reliable WTD
measurement at
sufficient spatial
resolution and on robust
baselines; remote WTD
remains the limiting
factor and dipwells are
currently the only viable
high-accuracy route.

Elevated risk of dispute

and administrative load if

uncertainty is high,
evidence routes are
unclear, or compliance
capacity varies across
land tenures; the report
flags risks of
misestimated liabilities
and significant
transaction costs when
assessments are
contested.

Costimplications

imagery-based
verification), but still
requires versioned
screening layers with
uncertainty and a
functioning
challenge route;
dispute-handling
costs are difficult to
predict depending on
mapping accuracy.

Highest cost profile:
installation,
maintenance and QA
of dipwells/loggers
are identified as the
dominant cost driver
in higher-accuracy
measurement
scenarios; costs may
fallif lower-cost
sensors mature, but
this remains
developmental.
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1 Introduction

Reducing greenhouse gas (GHG) emissions from peatlands represents one of the most
direct routes to meeting national climate targets (Kopansky et al., 2022). Degraded peat
is estimated to emit more than six million tonnes of carbon dioxide equivalent each
year; roughly fifteen per cent of Scotland’s total GHG emissions (Brown et al., 2024).
Current annual rates of re-wetting degraded peatland are insufficient to achieve area
targets by 2030 (NatureScot, 2025). This challenge is particularly acute in on severely
degraded or bare peat surfaces, which will not recover passively, and contributes
disproportionately to peatland GHG emissions. Peatland re-wetting’ would need to
proceed at roughly three times the current rate to meet the 250,000-hectare target by
2030 (Climate Change Committee, 2022). A carbon land tax could complement
restoration grants from Peatland ACTION and incentives to restore via carbon markets
through the Peatland Code, encouraging landowners and land managers to restore
damaged peatlands whilst creating a sustained economic signal to maintain peat in
good condition without further damage (e.g., from drainage or inappropriate burning). If
carefully designed, theoretically, such a tax could internalise many of the environmental
costs of degraded peatlands that are currently borne by society, whilst generating
revenue to support further public funding for restoration (Kotchen, 2022).

However, any new land-based tax must balance environmental ambition with fairness,
administrative efficiency and technical credibility (Heine et al., 2012). Land managers
would be expected to pay liabilities proportional to the emissions associated with their
peat holdings, but heterogeneity in land quality, vegetation, management, tenure and
accessibility means that identical actions may yield widely different emission
outcomes. If measurement or modelling methods cannot resolve these differences, the
tax could be perceived as arbitrary, undermining its legitimacy. Justice frameworks
suggest that fairness is not just about distribution of burden, but about recognition of
difference, procedure, transparency, and the capacity to contest (Ghafouri, 2023). As
such, depending on the accessibility of the landholding and the capacity of landowners
to use measurement methodologies, those with less capacity may be unfairly
disadvantaged. Highly technical monitoring requirements have the potential to increase
transaction costs, while the use of “black-box” models may simplify measurement
needs but reduce trust, leading to increased contestation of liabilities. These concerns
make it essential that any measurement method is transparent, accounts explicitly for

" Restoration and rewetting are used interchangeably in this report. In doing so, we do not imply
thatitis likely that peatlands will be restored to their historic undisturbed state, but emphasise
the aim of restoring the functioning of the area as a wetland. This is done through raising water
tables, i.e. rewetting.



measurement error, and allows for audit or appeal, and calibrates liability to avoid
excessive penalisation of variance that cannot be controlled. The Scottish
Government’s tax framework offers guiding principles for assessing these challenges.
Proportionality requires that the burden reflects both ability to pay and the scale of
emissions (Scottish Government, 2021). For efficiency, the system should deliver
environmental outcomes without imposing excessive compliance or enforcement costs
and should also account for the carbon costs of restoration interventions, to ensure
liability reductions reflect net GHG benefit (Brennand et al., 2025). Certainty and
convenience principles require clear rules for liability and simple processes for both
taxpayers and tax administrators.

Reducing LULUCF emissions through a tax on directly or indirectly measured peat GHG
fluxes will require sufficient temporal resolution so that tax rates can be updated
regularly (for example, every one to five years) to encourage restoration management.
This implies resolving fundamental measurement and administrative challenges so
emissions can be quantified accurately, attributed fairly at holding level, and managed
efficiently. Current inventory and Peatland Code approaches are scientifically credible
for national reporting and restoration verification, but rely on fixed emission factors for
broad condition classes and cannot distinguish liabilities at the level of individual
holdings, so a tax would need to move beyond these methods. Proxy-based systems
linking emissions to measurable drivers, especially water-table depth, offer a practical
route but require calibration against direct flux data, transparent error reporting, and
spatially balanced sampling to connect fine-scale process understanding to landscape-
scale assessment. Functional indicators of peat condition (including surface and sub-
surface proxies) can help interpret hydrological change, but do not remove the need for
validation at the GHG flux level. For credibility and fairness, the evidence route must
also be accessible across diverse owners and tenures, support independent verification
and appeal, and avoid penalising those with limited technical capacity. This
requirement means that any tax scheme tied to measured emissions must diverge from
the principle of GHG reporting following Intergovernmental Panel on Climate Change
(IPCC) methods, where yearly reported emissions should be independent of short-term
yearly changes in weather. To achieve the temporal responsiveness required for
taxation, emission estimates will inevitably capture inter-annual weather effects,
meaning that if a tax is tied directly to net emissions, liabilities could fluctuate annually
with weather conditions. Mechanisms would therefore need to be incorporated into the
tax design to smooth volatility, such as setting a fixed total annual tax yield, with each
landowner’s contribution proportional to their relative emissions, so that no one pays
excessively in dry years or disproportionately little in wet years.

For clarity, this report distinguishes between three general approaches to quantifying
GHG emissions from peat. These are not mutually exclusive but differ in their purpose
and resolution:



e Nationalinventory, emissions factor, or discrete approach: defines discrete
condition classes and assigns each a specific emissions factor derived from
available scientific evidence. Each parcel of peat is allocated to a class based on
land-use, peat depth, and satellite data. The UK tier 2 example will be given.

e Direct measurements: physical measurements of GHG concentrations and
fluxes, typically using chamber or eddy-covariance techniques.

e Indirect or proxy measurements: estimation of emissions using variables
statistically or physically strongly associated with GHG fluxes, including
hydrological, chemical, and indicators of functional condition (e.g., water-table
depth, eH, pH, and surface vegetation structure).

In practice, these approaches are interdependent. Both the national inventory and proxy
methods rely on direct measurements to establish emissions factors and model
relationships, while the inventory approach itself can be viewed as a composite of
indirect methods.

Set against the measurement and administrative challenges outlined above, this report
has four aims:

e to provide a desk-based review of existing research on methods for measuring
peat-related greenhouse gas emissions;

e to summarise the key strengths and limitations of each method;

e to assess feasibility and applicability for use in a Scottish tax context where
liabilities must be attributable to individual landholdings and contestable on an
evidential basis; and

e toidentify priority further research needs to support Scottish Government policy
development.

The remainder of the report is structured as follows. Section 3 sets out the evidence
synthesis methodology, followed by Section 4 summarising the evidence base in a form
intended to support policy use. Section 5 then draws together the implications to
describe pathways towards a future carbon emissions land tax, including where the
current evidence base is sufficient for limited piloting and where it is not. Supporting
detailis provided in the appendices: Appendix 1 elaborates design options for a land
emissions carbon tax based on current methods and evidence; Appendix 2 summarises
implementation challenges (including issues with existing inventory and Peatland Code
approaches and comparators); Appendix 3 documents the review methodology in full;
and Appendix 4 provides the detailed review findings, including comparison of
measurement strategies and costing assumptions.
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2 Evidence Synthesis Methodology

The evidence synthesis identified and evaluated methods for measuring GHG
emissions from peatlands that could underpin a fair and technically credible carbon
land tax. The synthesis was divided into two distinct stages.

The first and major stage of the project was a targeted literature review designed to
collect evidence demonstrating whether measurements of proxy variables (remote or
ground-based) provided robust and quantifiable relationships to direct emission
measurements. Only studies that included a clear comparison between proxy-based
estimates and direct flux measurements of GHGs were considered valid evidence. This
strict condition on literature inclusion produced highly relevant studies but certainly
excluded relevant evidence on measurements of peat erosion, where emissions occur
off site are not measured and typically assumed to have a fixed emissions factor.

The second stage evaluated the proxy measurements of emissions in the context of a
carbon land tax. The context, as set out by the call document, was interpreted in terms
of quantifiable features of the measurement methods, which were expected to:

1. Have high enough temporal frequency (<5yrs) so that it can detect changes in
management practices and restoration activities to adjust carbon tax rates
regularly;

2. Have sufficient spatial resolution so that emissions from an area of peat can be
allocated to a landowner;

3. Have the prospect of being low cost, both economically and in terms of
intervention-related carbon costs;

4. Land-owners can significantly affect the proxy variable/measurement via land
management changes and interventions so tax can encourage/discourage
good/bad practices; and

5. Transparency in approach for ease of tax-dispute resolution and credibility.

The synthesis focused on studies conducted in peatland environments (defined Table
2), examining how various measurement approaches, such as remote sensing proxies
(e.g. INSAR-derived surface height changes) and other geo-biophysical indicators (e.g.
water table depth, supported by eH), related to direct measurements of peat emissions
obtained through methods such as chamber or eddy covariance (EC) techniques.
Chamber methods trap gas in small chambers and are representative of the small
measured-areas while EC measurement use windspeed and gas concentrations to
determine the transfer of gases to and from the atmosphere over larger spatial scales.
Literature from other countries and climates was also included to capture the most up-
to-date methodologies. The targeted review concentrated on studies that used
statistical measures such as R-squared values and root mean square error to quantify
the performance of proxy measurements compared to direct measurements.

11



The assessment identified and summarised direct measurement techniques for peat
emissions, outlining their strengths and limitations in the context of a potential peat
emissions tax. It then provided background on the proxy variables and measurements,
along with the search terms used in the targeted review. This was followed by the main
findings of the targeted review, which were discussed to derive recommendations for
the Scottish Government.

3 Summary of Evidence Synthesis findings

This review focused on methods for measuring CO; and CH, fluxes as the major
contributors to peat GHG emissions, while noting that nitrous oxide flux in nitrogen rich
environments (grass/crops/livestock on peat), and the downstream carbon loss in
actively eroding conditions, can be significant contributors in some circumstances.
Direct measurements of GHG emissions via EC or peat chambers were deemed too
costly at relevant spatial resolution to be viable. Direct measurements via peat
chambers are labour intensive while EC is expensive and sampling of emissions would
require careful coordination with ownership boundaries and both require expert
knowledge to interpret the results. Therefore, the review focused on indirect
measurements of proxy variables or “drivers” of emissions, including water-table depth,
supported by chemical indicators of saturation and oxygen availability (e.g. eH and pH)
and surface ecological indicators of hydrological function (Brennand, 2025), which
could then be used to predict yearly emissions.

The targeted literature review (methodology detailed in Appendix 3 and results in
Appendix 4) found that specific components of the GHG balance of peatlands are best
approximated by using different measurement methods. Since separate components
dominate the GHG balance of peat in different conditions, no singular measurement
method can be accurate across all of Scotland. However, there are common control
variables across components, and combinations of measurements and modelling can
be used to target several GHG components together. Water-table depth (WTD), soil
temperature and measurements of “greenness” (i.e. proxies of photosynthetic activity)
were found to be important variables for predicting peat GHG emissions. How each of
these drivers can be measured and the qualitative accuracy of the measurement
method can be seenin Table 1.

A full summary of the results of the evidence synthesis are in Appendix 4, detailing:
primary drivers/proxies of each component in the full peat GHG; how the drivers can be
measured by either remote or ground-based measurements and gives an assessment of
how well they measure the proxy in the context of yearly peat emissions; and how suites
of measurement methods which target the full peat GHG balance and meet the criteria

12



of sufficient spatial and temporal resolution are likely to perform in terms of accuracy,

cost and scalability. Key findings and implications from the evidence synthesis include:

Direct flux measurement methods (eddy covariance and chambers) were judged
not viable for taxation at holding scale because they are too costly and labour
intensive, require specialist interpretation, and are difficult to align with
ownership boundaries.

No single measurement method is accurate across all Scottish peat conditions;
different components dominate in different settings, but water-table depth, soil
temperature and “greenness” are common control variables that can be
combined to improve prediction.

GHG emissions from actively eroding peat can be significant, but erosion-related
emissions are rarely directly measurable and would require proxy monitoring and
conservative assumptions in any tax design.

Spectral Earth Observation is the most established and cost-effective approach
for tracking vegetation and surface processes, and can help estimate
photosynthetic activity. It is not a reliable predictor of CH, or heterotrophic
respiration (R;) across the range of Scottish peatlands, however interpretation is
strengthened where the most up-to-date, high-quality spatial and temporal
datasets are used.

Further research is required on the combined and individual use of SAR and
INSAR for peatland applications, including rigorous, transparent testing and
validation of existing (sometimes proprietary) algorithms that infer WTD and
related variables, and joint assessment of how SAR/InSAR outputs relate to
ground-measured WTD, NEE and CH,. Although elevation change and InSAR-
derived surface motion (including “bog breathing”) could in principle indicate
peat loss and emissions, no quantitative studies were found that directly
compare topographic measurements (InSAR, LiDAR, photogrammetry) with
measured peatland GHG emissions or annual emissions estimates; in the
literature, topographic variables are mainly used to interpret spatial differences
in flux measurements or for eddy-covariance quality control rather than to
estimate emissions, while greater surface microtopographic complexity
(hummock-hollow development) is associated with improved hydrological and
biogeochemical function supporting water retention and carbon accumulation.
The development of reliable remote methods for measuring WTD at scale
provides the greatest potential for cost-effective estimation of site-level GHG
emissions, but WTD remains difficult to measure remotely at parcel scale and,
on current evidence, a dipwell network is the only approach capable of delivering
sufficient accuracy for an emissions-tax basis (with potential for future cost
reductions via emerging low-cost WTD sensor development).

13



Table 1: Drivers of peat emissions and how they can be measured. Drivers (columns) are Soil Temperature (Temp); Water Table Depth (WTD); soil
nutrient status, particularly nitrogen Nutrients/pH); Ebullition refers to the sudden release of gas from peat. N,O was not examined in this review and
drivers are inferred from understanding of the mineral-soil nitrogen cycle. Scores between, Low, Medium, High and Very High are qualitative and
represent the accuracy at which the method can approximate the driver in the context of GHG emissions. Measurement methods with a * are
ground-based measurements, otherwise they are remotely sensed.

Measurement Description of method Light & Leaf Area Temp WTD Nutrients/pH Ebullition
method/Proxy
Vegetation Indices Satellite derived measurement of - - -
(Vis) ‘greenness’ from surface reflectance.
Indicates vegetation coverage.
Solar Induced Plants emit radiation during Very High - -
Fluorescence (SIF) photosynthesis, the strength of this
signal indicates the degree of
photosynthetic activity.
Quantum Sensor* Quantume-Llevel light detection to Very High - - - -
precisely measure photosynthetically
active radiation (PAR)
Inforeometric Comparison of radar data through time Low Low

Synthetic Apperature
Radiation (InSAR)

Land Surface
Temperature (LST)

Meteorological data

to measure movement

Satellite derived estimate of land
temperature from surface reflectance

Temperature data, interpolated from
readings taken at weather stations




Temperature probes*

Dip wells*

Land Surface Water
Index (LSWI)/
Modified

Water Index (MWI)
Soil tests

Fertilisation data

In situ measurement of temperature
taken by sensor

In situ measurement of water table
using monitoring well

Satellite derived measure of soil
moisture conditions from surface
reflectance

Sampling and lab analysis

Survey data on quantities of fertiliser
applied to fields.

Very High

Very High

High

Very High
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e Proxy-based approaches are strengthened when WTD evidence is interpreted
alongside indicators of persistent saturation and oxygen availability (eH and pH)
and surface ecological indicators of hydrological function, including as lower-
cost contextual checks on hydrological conditions, subject to appropriate quality
control.

e Anyemissions approach using calibrated proxy-driver models would need field
calibration and validation (with performance reported using standard metrics)
plus explicit, published rules for quantifying and managing uncertainty, including
confidence thresholds for screening/review, parcel-level intervals, and
predefined uncertainty discounts where evidence remains material, to support
audit and dispute resolution.

4 Pathways to a future carbon emissions land tax

The brief for this project recognised that calculating emissions from peatlands is
difficult and requires specialised measurement techniques. Approaches to emission
measurement which are applied elsewhere within the nascent carbon market, UK GHG
inventory and the Peatland code, are based on emission factors connected to a range of
condition categories. However, they are designed to operate across the UK, and
uncertainty is high at site level, so these approaches do not produce a sufficiently
robust dataset to enable an emissions-based tax system which could:
e Determine liability at individual taxpayer level;
e Be sufficiently responsive to emission changes to enable reliefs which would
encourage land management practices to achieve emission reductions; and
e Be sufficiently robust and transparent to enable appeal and adjudication of tax
disputes.

Our research has shown that no single measurement can adequately meet the above
challenges. Direct measurement techniques would provide the necessary level of
accuracy and resolution to inform the design and implementation of an emissions-
based tax instrument. However, they are not scalable for routine assessment across
holdings, given the expertise and costs involved in doing so. Proxy variables (measured
by a combination of ground sensors and remote platforms) may provide repeatable,
auditable signals at costs compatible with tax administration.



Table 2 2: Comparison matrix of measurement strategies for estimating peatland greenhouse gas (GHG) emissions. Each scenario outlines a suite of methods used to measure light
and leaf-area characteristics, surface temperature, and water-table depth (WTD), with optional soil sampling for nutrient and pH data. Costs are presented for two monitoring extents
(ScotGov Target: 250,000 ha and all degraded peat: 1,952,000 ha) and include annual operational and initial capital expenditures. Scenarios progress from low-cost, low-accuracy
remote sensing (Scenario 1) to increasingly detailed hybrid ground/remote approaches incorporating on-site dipwells, soil analysis, and hyperspectral data (Scenarios 2-4). Reported
GHG coverage (CO,, CH,, N,0) and indicative accuracy reflect each method’s capacity to resolve drivers of emissions.

table depth

5yearly dipwell

Scenario Assumed Item Annual operational cost | Initial capital cost GHG Accuracy
measurement Coverage
250,000ha 1,952,000ha | 250,000ha 1,952,000ha g
protocol
Scenario 1: Remote | Open source satellite Poor
Sensing and meteorological Initial model - - £3,000,000 £3,000,000
data obtained, development LSWI provides
. . inspected and an
Light and Leaf :
Slagtell?tz de:\?e(?:z: B processed annually. Annual data Nil Nil - - inconsistent
Utilising open source N acquisition cost approximation
MODIS. Landsat. Sentinel Initial model for water table
data ’ ’ development and Data integration £42,000 £84,000 - - over longer
calibration using and processing time periods,
Temperature: LST/ existing QK and and mc?del.llng
Meteorological data Ireland site of respiration
measurements drawn Total: Total: Total Total | CO2, CH4 and CH4
i from literature. £42,000 £84,000 £3,000,000 £3,000,000 | (Missing requires
WTD: LSWI/MWI
’ N20) information
on WTD.
Scenario 2: Remote | Opensource satellite
Sensing with on- and meteorological Initial model - - £3,000,000 £3,000,000
it ter tabl data obtained, development
site water table inspected and
measurement processed annually. Dipwell - - | £4,125,000to £32,208,000 to
construction cost £5,125,000 £40,016,000
Light and Leaf area: Initial model (low, high)
Satellite derived Vs — development and
Utilising open source calibration using Annual data
MODIS, Landsat, Sentinel | existing UK and acquisition cost Nil Nil
data Ireland site B B
measurements drawn | Data integration £63,000 £126,000
Temperature: LST/ from literature. and processing - -
Meteorological data
Average annualwater | Annualised cost of £450,000 £3,500,000




WTD: Dipwells installed determined from 3-5 servicing by
at site. Remote dipwells per 100ha. ecological surveyor. Total: Total: Total: Total: | CO2, CH4 Good and
monitoring of water table | installed at site and £513,000 £3,626,000 £7,125,000 to £35,208,000to | (Missing costly
by pressure transducer. remote sensing by £8,125,000 £43,016,000 | N-O)
pressure transducer.
Scenario 3: Remote | Open source satellite
Sensingwith on- and meteorological Initial model - - £3,000,000 £3,000,000
. data obtained, development
site water table inspected and
measurement and processed annually. Dipwell - - | £4,125,000to £32,208,000 to
soil testing to target construction cost £5,125,000 £40,016,000
N,O Initial model (low, high)
development and Nil Nil
Light and Leaf area: calibration using Annual data -
Satellite derived Vs — existing UK and acquisition cost -
Utilising open source Ireland site £63,000 £126,000
MODIS, Landsat, Sentinel measurements drawn | Dataintegration -
data from literature. and processing -
£450,000 £3,500,000
Temperature: LST/ Average annualwater | Annualised cost of -
Meteorological data table depth 5yearly dipwell -
determined from 3-5 servicing by
WTD: Dipwells installed dipwells per 100ha. ecological surveyor.
at site. Remote installed at site and £8,000 £56,000
monitoring of water table remote sensing by Annual soil testing -
by pressure transducer. | Pressure transducer. -
Annual calibration. Total: Total: Total: Total: | CO2, CHa, Good and
Annual soil testing of £521,000 £3,682,000 £7,125,000 to £35,208,000to | N.O costly
Nutrients and Ph: 9,000ha cropped £8,125,000 | £43,016,000
Annual soil testing. peatland area. Improves
applicability
of Scenario 2
to better
reflect N2O
emissions
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Scenario 4:
Hyperspectral data
with on-site water
table and soil
testing

Light and Leaf area:
Hyperspectral data

Temperature: LST/
Meteorological data

WTD: Dipwells installed
at site. Remote
monitoring of water table
by pressure transducer.
Annual calibration.

Nutrients and Ph:
Annual Soil testing.

Hyperspectral data
obtained, inspected
and processed
annually.

Initial model
development and
calibration using
existing UK and
Ireland site
measurements drawn
from literature.

Average annual water
table depth
determined from 3-5
dipwells per 100ha.
installed at site and
remote sensing of

pressure transducers.

Annual soil testing of
9,000 ha cropped
peatland area

Initial model
development

Dipwell
construction cost
(low, high)

hyperspectral data
acquisition cost

Data integration
and processing

Annualised cost of
5yearly dipwell
servicing by
ecological surveyor.

Annual soil testing

£110,000

£63,000

£450,000

£8,000

Total:
£631,000

£860,000

£126,000

£3,500,000

£56,000

Total:
£4,542,000

£3,000,000

£4,125,000 to
£5,125,000

Total:
£7,125,000 to
£8,125,000

£3,000,000

£32,208,000to
£40,016,000

Total:
£35,208,000 to
£43,016,000

CO2, CHa,
N20O

Good and
costly

Improves
accuracy at
predicting
GPP
compared to
scenario 3 but
may lose
spatial
resolution.
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Water-table depth is the most salient proxy, as there is strong site-level evidence that it
responds to restoration, it is easy to interpret, supports independent verification and
underpins the interpretation of remote indicators. Unfortunately, water-table depth was
found to be the most difficult proxy to measure remotely. We found that a network of
dipwells is currently the only viable approach to measure water-table depth at a
sufficient accuracy to be the basis of an emissions tax. Although costly using current
methods, more efficient, lower-cost approaches are currently being developed via
Environment Agency funded research by the Centre for Ecology and Hydrology, with
additional scope to explore supplementary citizen science approaches and low-cost eH
probing to support interpretation of hydrological conditions (Brennand, 2025), subject
to appropriate quality control.

To support consideration of feasible pathways, alternative measurement configurations
were grouped into a small number of illustrative scenarios in Table 2. Each scenario
combines remote and ground-based methods to differing degrees and reflects trade-
offs between accuracy, cost, spatial resolution and administrative burden. The
scenarios are not proposals for implementation but structured comparisons intended
to clarify the implications of different design choices for a land emissions carbon tax.
The table shows that purely remote sensing approaches are not currently sufficient to
estimate peatland greenhouse gas emissions with the accuracy required for taxation.
Scenarios relying only on satellite-derived proxies fail primarily because water-table
depth, the dominant control on CO, and CH, emissions, cannot yet be measured
remotely with adequate reliability at parcel scale. As a result, these approaches risk
systematic misestimation of liabilities.

Introducing ground-based water-table measurements produces a step change in
accuracy, but this improvement comes with a substantial increase in cost and
operational complexity. Scenarios that incorporate dipwells enable emissions
estimates that are responsive to management and restoration, but installation,
maintenance and quality control represent the dominant cost driver across all higher-
accuracy options. Although not yet commercially available, ongoing research by CEH
into the development of low-cost WTD sensors that could substantially reduce these
costs is significant.

Adding further measurements, such as soil testing to capture N,O emissions,
marginally improves completeness but does not fundamentally alter the cost-accuracy
balance. These additions are relevant only for limited areas of cropped peat and do not
resolve the core constraint imposed by water-table measurement requirements. Use of
hyperspectral data improves estimation of photosynthetic uptake, but this gain is
incremental relative to the costs incurred and may reduce spatial resolution, which is
problematic for attribution to individual landholdings. Across all scenarios, Table 2



shows that accuracy gains are non-linear relative to cost. The largest improvement
occurs when water-table depth is measured directly, after which additional expenditure
yields diminishing returns. This suggests that a fully accurate, nationally applied
emissions-based land tax is not currently feasible without disproportionate cost, but
that narrower, phased or pilot approaches targeting the highest-emitting peat types are
technically plausible, with further research focussed on reducing the cost and
improving the scalability of water-table measurement.

A tax linked to emission estimates derived from calibrated water-table—flux response
functions would complement, not replace, the UK inventory and the Peatland Code’s
class-based factors for bogs (note the Peatland Code already uses this approach in
fens). Estimating emissions using models which use several proxy measurements as
inputs would need to be calibrated, validated in the field and accompanied by clear
rules to calculate and manage uncertainty.

However, proxies are indirect and rely on empirically fitted response functions (and their
parameterisation), model calibration to local conditions and periodic ground truthing,
which would benefit from spatially balanced sampling approaches to ensure field
measurements are representative and capture meaningful hydrological and ecological
variability (see Appendix 1). As they can be sensitive to weather, sensor limits and site
heterogeneity, it is important to quantify uncertainty and factor this into decisions
based on proxy data. As such, there are significant risks associated with the design and
implementation of a carbon emissions land tax, based on current methods and
evidence, including:

e Theinvestment, skills and resources required to capture water table depth at
sufficient spatial resolution;

e The confidence levels around the accuracy of data on which the tax will be
based, particularly when compared to the authenticity and robustness of data
on which other taxes are assessed;

e The complexity of measurement involved and the associated costs for tax
authorities, taxpayers and adjudicators in making and assessing appeals; and

e Theresponsiveness of such a measurement regime to changes in emissions and
its ability to accommodate reliefs to incentivise improved land management
techniques

These challenges risk misestimating liabilities and imposing significant transaction
costs on the tax authority and landowners when assessments are contested. As such,
there are two broad pathways towards the design of a tax with sufficient accuracy,
transparency, responsiveness and cost-effectiveness.
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First, based on the evidence in this report, research may be commissioned to fill critical
evidence gaps prior to a re-evaluation of the technical feasibility of administering a
carbon emissions land tax. This could also usefully include the piloting of protocols and
assessment of likely implementation costs, as outlined at the end of this section.
Research gaps that could be addressed include:

e (Calibrate functions which estimate emissions based on remotely-measured-
water-table-depth (and possibly other proxy variables) for Scotland’s main peat
types and management states using multi-year chamber and eddy-covariance
measurements, if possible based on the SCOT2FLUX network of research-grade
reference sites (Artz et al., 2023) with analogous flux sites elsewhere in the UK
and Ireland (of which there are now many);

e Determine parcel- or holding-scale minimums for dipwell existing evidence?,
relative to site features such as slope breaks and drainage features etc;

Build and validate national screening layers of peat extent and condition with
pixel-level uncertainty suitable for setting default liabilities, published as dated,
numbered releases with documented changes;

e Investigate options for improving remote inference of water-table depth, for
example, by integrating radar, LiDAR and optical indices, with additional ground
truthing data;

e Establish whether low-cost functional indicators of peat structure and chemistry
can be used alongside water-table depth to verify recovery trajectories and time-
lagged emissions reductions. Evidence indicates that peatland recovery
following restoration is governed by changes in pore networks that control water
storage and gaseous exchange (Rezanezhad et al., 2016), with hydrological,
structural and carbon recovery progressing over years to decades and lagging
behind surface vegetation change (Spencer et al., 2017; Brennand, 2025). uCT
studies show that restoration increases vertically connected pore structures that
support sustained saturation and restrict oxygen diffusion, while laterally
connected drainage-related pores decline over 5-10 years, coinciding with
improved bulk density, surface moisture, pH and redox potential (eH) profiles
(Brennand, 2025). These functional changes are consistent with declining CO,
emissions over decadal timescales and determine when restoration transitions
from net carbon loss to net carbon benefit once intervention carbon costs are
accounted for (Brennand et al., 2025). Research is needed to test whether
depth-resolved pH and eH profiles can act as robust, auditable proxies of
functional recovery and net emissions reduction, and whether such indicators
could be used as eligibility triggers or scaling factors for tax relief within a water-

2 For example, Artz et al. (2023) show that around seven loggers can estimate mean annual water-table
depth within ~50 mm at 95% confidence on a rewetted raised bog with diminishing returns beyond ~15
and that daily readings are sufficient for annual means.
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table-depth-linked tax model, rather than relying on fixed assumptions about
recovery and payback.

Second, a tax could be designed with a narrowed scope, that could be introduced via
pilots or in phases, to reduce risks and learn lessons for further refinement and wider
roll-out. Appendix 1 suggests how, based on the strengths and weaknesses of the
methods reviewed in this report, such a phased approach or pilot might be designed,
starting with a narrow scope pilot targeting only the highest emitting eroding peats,
verified using lower cost visual methods (e.g., including recent orthophotography, UAV
imagery, repeat LiDAR or photogrammetric surface models to detect erosion features
and stabilisation, and dated georeferenced photographs of restoration works). Next,
pilots could be extended to drained or modified peatlands using proxy-based
approaches centred on water-table depth, with default liabilities set from national
screening layers and adjusted using rolling multi-year WTD evidence collected to a
published minimum standard. Proxy estimates would be supplemented by sampled
direct measurements for calibration and verification, with the intensity of measurement
and review prioritised according to quantified uncertainty, dispute risk and the
magnitude of claimed liability adjustments.

In addition to filling the evidence gaps identified above, it would therefore also be
important to:

e Trial verification, audit and appeals protocols (including the proposals in
Appendix 4 for desk screening, targeted analyst review, evidence requirements
and triggers for field checks);

e Run place-based pilots of the narrow scope simple evidence rule proposed in
Appendix 4, to quantify accuracy, costs, likely dispute rates and operational
feasibility.

e Use pilot data to model likely administrative and transaction costs under
authority-determined, self-assessment and hybrid designs to inform resourcing
and case-handling capacity.

It is notable that the level of complexity and uncertainty involved in the proposals for a
tax based on current methods and evidence is an outlier compared to most other taxes
on land or property, even in the context of land value based taxes which rely on
considerable technical assessment and are routinely challenged by taxpayers with
disproportionate collection costs (e.g., land taxes applied in Australia and some US
jurisdictions, and property taxes based on assessed value, such as the Ireland Local
Property Tax). Whilst it may be technically possible to develop the broad structure
articulated in Appendix 1 to pilot a tax with a narrow scope, doing so without further
research may expose any regime to considerable challenge involving significant costs

23



contrary to Scottish Government’s tax principles of economic efficiency, certainty and
convenience, and risking undermining the viability of the tax going forward.

Evidence on likely objections is outside scope, but it has implications for feasibility
because compliance and appeals are likely to be shaped by administrative burden and
by contested attribution of liabilities. Practical issues such as access constraints,
shared tenure and crofting contexts, and coordination across boundaries could
increase dispute rates and collection costs unless measurement protocols and
evidence standards are transparent and workable in low-capacity settings. There is also
a feasibility risk that expectations of future liabilities could incentivise baseline gaming
(for example, pre-emptive drainage), reinforcing the need for robust baselines and clear
rules on evidence and change over time.

Notwithstanding these wider issues around the design of any future tax, further
research is required to refine measurement approaches to a level of robustness that
could enable an equitable, practical and potentially cost-effective regime. This is an
area of rapid development, not least in remote sensing, which may introduce additional
measurement options, likely still proxy-reliant, capable of delivering datasets of
sufficient resolution, reliability and transparency for administrative use. In the
meantime, research should focus on the key challenges set out above, including
improving parcel-scale inference of water-table depth, strengthening calibration and
validation across Scotland’s main peat types and management states, and developing
published baselines and uncertainty rules suitable for verification, audit and appeals.
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Appendix 1: Design options for a land emissions carbon
tax, based on current methods and evidence

6.1 Evidence base for WTD as a primary driver of emissions

The evidence reviewed in this report has shown that water-table depth (WTD) is the
most consistent driver of GHG emissions across managed peatlands in temperate
climates. In a UK and Ireland dataset, mean annual effective WTD alone explained most
variation in annual CO, balance and much of the variation in CH,, with linear and
exponential responses respectively, which held true when other non- UK sites were
included (Evans et al., 2021). Comparable patterns are reported in large chamber
datasets from central Europe, which have been used to develop WTD-based response
functions for drained organic soils (Tiemeyer et al., 2020). Some global analyses that
pooled peatlands with other wetland types across multiple climate zones have ranked
temperature more highly as a driver for methane and shown weaker or biome-specific
WTD-CO, effects (Knox et al., 2019; Turetsky et al., 2014). However, Zou et al.’s (2022)
global synthesis concluded that CO,-equivalent emissions from wetland sites were
kept to a minimum when the water table was close the surface (-30 to -5¢cm). This
suggests that in Scotland, where blanket bogs and heaths dominate, WTD is a highly
relevant proxy for the annual net greenhouse gas exchange of these habitats. Low-cost
redox potential (eH) measurements at and below the surface can provide
complementary information on oxygen availability and persistent saturation, helping
distinguish between hydrologically dynamic surface layers and more stable, anoxic sub-
surface zones associated with long-term carbon storage. Such indicators do not replace
WTD-flux relationships, but can strengthen interpretation of snapshot WTD
measurements and support identification of conditions conducive to sustained carbon
retention and potential accumulation.

6.2 Measurement options and proxy indicators for WTD and function

There is case study evidence that it responds to many types of restoration and other
forms of management and can be measured directly with dip wells or potentially
inferred from variables such as InNSAR-derived surface motion, Sentinel-1 backscatter—
based surface-reflectance-based moisture indices, LiDAR-derived topographic wetness
and ditch density, and simple water-balance modelling. UaV deployed thermal, RGB
and ground-penetrating radar also offers considerable potential to map WTD at site
level over short to long temporal frames. Surface indicators of functional condition -
including Sphagnum presence and microtopographic development, bare peat extent,



and graminoid or vascular dominance - are systematically linked to sub-surface
hydrological structure, oxygen availability, and carbon retention, and offer proxy
indicators of functionality that could be integrated with remote sensing to support
interpretation of WTD-based approaches (Brennand, 2025). However, more evidence is
needed to confirm WTD responses to restoration across different peatland contexts,
and there are currently significant limitations affecting the accuracy of remotely sensed
proxies. Although a tax anchored to WTD-responsive estimates may be more likely to
ensure that liabilities correspond reliably to restoration actions than one tied to
changes in condition categories linked to emissions factors, significant attention would
need to given to the management of risk and uncertainty arising from these
methodological limitations.

6.3 Administrative feasibility and costs

The case for WTD as the primary organising variable is further strengthened by
administrative considerations. A parcel-or holding-level tax that changes with
restoration must rely on data that owners can influence through practical actions, that
are observable by the authority, and that can be verified independently. Dipwells with
loggers are robust and increasingly used in restoration monitoring, but depending on the
density and accuracy needed (e.g. to avoid drift and inter-operator errors), may be too
expensive to be feasible within the context of a tax. Costing assumptions suggest mean
annual WTD would typically be derived from around 3-5 dipwells per 100 ha (average 4),
with costs driven by both installation labour and the unit cost of materials and pressure
sensors/data loggers. On that basis, indicative installation costs scale rapidly, as
outlined in Appendix 4, Section 10.4.

However, where continuous logging isn’t feasible, a minimum programme of installed
dipwells with periodic readings, plus documented drain blocking/rewetting works and
mapped drainage density, may still support auditable WTD-based estimates. Moreover,
lower-cost approaches are currently being developed via Environment Agency funded
research by the Centre for Ecology and Hydrology. It is estimated that current sensor
costs of around £200 may be reduced to as little as £100 per unit via this work,
compared to current sensor costs of over £500 (Chris Evans, pers. comm., 18
December 2025). Where current commercial sensors cost £518, it is hoped that the
outcome of this research will reduce the unit cost of sensors to £100- £200. Assuming
that other costs remain the same, a £418 saving per sensor would equate to more than
£4 milllion saving on the cost of installing and equipping 250,000ha or more than £32
million saving over the full peatland area of 1,952,000ha (compared to costings in
section 10.4). Nevertheless, the cost of compliance of this approach, modest though it
may be compared with other monitoring options, would represent a relatively high
taxpayer burden compared with other UK and Scottish taxes. The worthwhileness of
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this expenditure to a taxpayer would depend on the amount of tax at stake. In addition,
there are material central (non-landholder) costs implied by a WTD-linked system,
including initial model development and calibration (costed elsewhere in the report as a
multi-year research effort) and ongoing data integration/processing capacity, which
would need to be resourced alongside field monitoring if the system is to remain
auditable and consistent over time.

6.4 Uncertainty management and verification pathways

The evidence reviewed in this report shows that a number of important uncertainties
would need to be quantified and accounted for, as WTD—flux functions vary among peat
types and land uses, methane responses can be sensitive to vegetation, temperature
and ebullition events, and short-term weather variations can mask or amplify
management effects (e.g., Turetsky et al., 2014; Knox et al., 2019; Evans et al., 2021).
There may be several options for managing these uncertainties. For example, liabilities
could be based on rolling averages, so that weather noise is damped but lasting
management effects still alter the average. This mirrors how bathing waters are
classified, where SEPA uses four seasons of monitoring data to set the annual status for
each site, updating the series each year (SEPA, n.d.; Marine Scotland, n.d.). Estimates
of uncertainty would need to be reflected in any tax decision, for example by publishing
confidence intervals, applying conservative adjustments where uncertainty is high, and
setting clear appeal routes, with associated evidence requirements. This is consistent
with the UK Emissions Trading Scheme, which requires formal uncertainty assessments
and conservative substitute data where measurement uncertainty or gaps occur (UK
ETS Authority, 2025; DESNZ, 2025). Where evidence supports action but retains
material uncertainty (for example, the lower 95% bound of the rolling-mean emission
estimate still exceeds a minimum threshold, or the mapped class probability is above
the acceptance threshold), an uncertainty discount could be applied, so only the
substantiated share is charged, with the same rule applied to claimed reductions (c.f.
Heine et al., 2012).

The evidence that has been reviewed suggests that remote sensing may be able to play
a useful role in mapping peatland extent and broad changes in condition, based on
vegetation and surface proxies, to prioritise the deployment of more expensive methods
for detecting WTD change. Optical reflectance and solar-induced fluorescence track
Gross Primary Productivity well, so they are informative for CO, uptake, especially in
open bogs, fens and cutover sites (Kross et al., 2013; Dubois et al., 2018). Yet
heterotrophic respiration and methane emissions are rarely approximated well by
optical signals, particularly over seasons when WTD dynamics decouple plant stress
from microbial processes (Junttila et al., 2021). InSAR provides measurements of peat
surface motion which can indicate hydrological change and identify re-wetted areas,
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but published links to annual carbon balance remain indirect. Moreover, InSAR signals
are sensitive to sensor geometry, soil moisture and season, which complicates direct
translation to annual carbon balance (Alshammatri et al., 2020). In addition, the
algorithms that are used to process INSAR data have not been independently tested in
the UK, partly because many of them are proprietary.

Logistical and cost constraints limit the number of sites, samples, and deployment of
monitoring equipment within peatlands, reducing confidence in the representativeness
of peatland condition. A spatially balanced sampling framework (Kermorvant et al.,
2019; Mastrantonis et al., 2024), developed for peatland restoration assessment
(Brennand, 2025), provides a practical method for targeting WTD measurements and
designing calibration studies for WTD-flux response functions. Rather than deploying
equipment randomly or opportunistically, the approach combines mapped peat extent,
peat depth, slope and aspect, accessibility, surface condition indicators (e.g., INCC
vegetation functional groups and physical degradation indicators including bare peat),
drainage and restoration intensity, bog pool proximity, and microtopography to identify
representative plots across gradients of degradation, restoration state, and hydrological
setting.

Applied within a WTD-based tax or monitoring framework, this enables optimisation of
WTD instrumentation in locations most likely to capture hydrologically and
biogeochemically meaningful change, including areas influenced by drainage features,
slope breaks, and restoration interventions. This could reduce the number of dipwells
required while increasing confidence that measured WTD dynamics are relevant to
emissions processes.

The same framework supports calibration of Scottish WTD-flux response functions,
enabling chamber or eddy-covariance measurements to be spatially representative of
wider peatland units. Surface indicators already used in condition assessment (JNCC,
2009) can be used to stratify calibration datasets, accounting for variation in vegetation,
degradation state, and hydrological setting.

Used alongside remote sensing, spatially balanced field sampling offers a transparent
and auditable means of optimising the deployment of higher-cost measurements,
supporting improved model calibration and more cost-effective verification within a
WTD-linked land emissions tax.

These limitations suggest that significant (and possibly costly) verification will be
needed for extensive areas. To reduce the costs of verification, thresholds could be set,
so that high-confidence areas are cleared by desk screening (an administrative check
using maps, recent orthophotos, lidar/SAR layers and works records), medium-
confidence areas undergo review (a targeted analysis by technicians, comparing
multiple sources, recent imagery and any local evidence, with follow-up queries as

36



needed), and the low-confidence areas trigger water-table measurements for
verification and further model improvement. For example, in these sites, landholders
could install and maintain dipwells or piezometers to record water-table depth at a
specified frequency, with quality assessment including sensor checks and
georeferenced site photos. For holdings that contest default liabilities in high and
medium confidence areas, landowners could opt-up to a higher-evidence route by
documenting hydrological works (for example, drain blocking or bunding) and installing
WTD sensors, enabling recalculation on a stronger evidential base.

6.5 Initial rollout options and sequencing

Given the potential cost of water-table-depth (WTD) measurements needed to verify
remote-sensing outputs, an initial phase could focus only on bare and actively eroding
peat. This would avoid upfront investment in WTD networks, target the largest source of
peatland emissions, and rely on lower-cost visual verification (e.g., recent orthophotos
or UAV surveys) to confirm status and change. Landowners seeking to challenge how
their liabilities have been assessed could show mapped areas are not eroding or have
been stabilised (e.g., using repeat UAV/LiDAR surveys showing reduced roughness and
infilled haggs/gullies, and GNSS-mapped, dated works with photos). As method
reliability improves, scope could be widened to drained or modified peat, using
remotely sensed proxies with WTD measurements reserved for verification and appeals.
Selective application of a tax does raise questions about the broad taxation principles
of equity and fairness, which are central to the Scottish government’s general approach
to taxation.

If a WTD-based approach is preferred, a sequenced approach might start with a narrow
scope, restricted to degraded blanket bog above agreed extent/depth thresholds and
applying a two-part evidence rule based on: 1) a published national screen (peat
extent/condition with confidence) to set a default liability; and 2) a minimal water-table
dataset collected by the owner on included peat (installed dipwells or piezometers at a
fixed density, periodic readings or low-cost logging, and basic quality assessment such
as georeferenced photos and installation records). The default liability would then be
charged unless the owner’s rolling-average WTD meets a stated threshold for wetter
conditions, and where it does meet this threshold, liability could be reduced according
to the published WTD—flux function. Field visits would only be triggered for low-
confidence map areas or where claimed adjustments are large. Richer evidence
streams (dense WTD networks, detailed ditch mapping, INSAR or spectral modifiers),
complex data fusion and routine site surveys would then be deferred to later phases of
the tax roll-out. Again caution would be needed with an approach like this with regard to
the wider tax principles of fairness and equity as between taxpayers and the type of
peatland they own or occupy.
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6.6 Baselines, definitions and implementation constraints

When considering the feasibility of piloting a tax, whether based on visual or WTD-
based methods, a number of additional method limitations should be acknowledged.
Current peat maps were developed for broad survey purposes rather than parcel-scale
administration, which creates a non-trivial risk of omission and commission errors at
holding scale. The 50 cm organic horizon threshold currently used to define peatin
Scotland is high by global standards, and there are extensive areas where measured
depths lie close to this cut-off. In such contexts, small errors in mapping or depth
measurement could determine whether otherwise similar land parcels are taxed or not,
with significant implications for perceived fairness and dispute risk. Any peat-based tax
would therefore require a versioned national peat baseline with pixel-level uncertainty,
clear and consistently applied peat definitions, and explicit rules for treating soils close
to depth thresholds, including how uncertainty is reflected in liabilities and appeals.

A practical approach to the question of peat depth definitions would be to adopt a
single, published definition for tax purposes (for example, specifying an organic horizon
thickness threshold and minimum organic carbon content) alighed as far as possible
with the UK Inventory/Peatland Code and international conventions, but this would still
raise materialissues, including misclassification where depths cluster near the cut-off,
inconsistency between map products and field measurements, incentives to contest or
re-measure borderline soils, and the need to specify standardised field methods and
error tolerances so that liability and appeals do not hinge on small differences in
sampling location or technique.

Mean water-table depth remains the most informative driver at policy scales, but
accuracy at local scale depends on reliable in situ logging. Remote inference of water
table appears strongest for wetter sites and is weaker on deeply drained ground. The
use of InSAR to infer peat motion or hydrological status shows potential but currently
requires site-level validation against independent ground observations before it can
inform liability. These uncertainties imply material risks of over- and under-assessment
where evidence quality is uneven, and they strengthen the case for conservative
defaults, clear appeal routes, and phased adoption linked to validation results.

Equity and feasibility constraints would also need to be considered. There are large
tracts of unrestored peat in the Highlands and Islands, with fragmented ownership in
shared hydrological units and a significant area of crofting common grazings. Heavy
machinery access is limited in many places, coordination across boundaries is often
required for re-wetting, and herbivore pressure can slow vegetation recovery. These
factors imply that even with accurate measurement, charging rules would have to
reflect realistic restoration timelines and constraints outside owners’ immediate
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control. For example, exemptions or deferrals could be made for access-constrained
sites. In addition to this, full land registration coverage has not yet been achieved,
complicating the administration of any tax.

6.7 Links to UK GHG inventory, Peatland Code and international
comparators

A tax linked to emission estimates derived from calibrated water-table—flux response
functions would complement, not contradict, the UK’s GHG Inventory and the Peatland
Code’s category-based emission factors for bogs and would align strongly with the
Peatland Code’s approach to assessing emissions from fens. It would provide finer
temporal and spatial resolution while remaining anchored in measured fluxes, the same
empirical basis used for emissions factors used in the Inventory and Peatland Code.
Making such data available through the tax system could, over time, help refine
emissions factors used in the Inventory and Peatland Code. For Peatland Code projects,
the same datasets (e.g., logger-based WTD time series, mapped drainage density with
documented rewetting works, and remote indicators of condition change) could
substantiate baseline survey work, show movement between condition categories
(reducing the need for site visits by independent verification bodies), and strengthen
risk and monitoring plans. As such, tax-derived evidence may lower transaction costs
and further increase confidence in the additionality, permanence and quantification of
units issued via the Peatland Code.

While this alignment offers potential efficiencies, it remains important to recognise that
comparable WTD-based systems in Europe have been developed primarily for
monitoring and inventory purposes, and their transferability to a holding-level tax
context in Scotland is not straightforward. Experience elsewhere in Europe appears to
support a WTD-based approach to a future tax, however these countries are dominated
by degraded agricultural peats compared to the diversity of semi-natural peatland
habitats found in Scotland. Moreover, these systems have been developed primarily for
the purposes of national monitoring, rather than a tax (although Denmark is proposing
the use of this data in their proposed tax system), and may still lack the necessary
spatial and temporal resolution needed. Germany’s grid-based Tier 3 methodology
relates CO, and CH, to long-term mean annual WTD with response functions fitted to
national chamber data (Tiemeyer et al., 2020). The Netherlands operates a parcel-scale
Tier 3 methodology for coastal organic soils, with groundwater—decomposition
modelling calibrated to an extensive flux network (although upland peat emissions are
still calculated using emission factors) (Erkens et al., 2022). Denmark has developed
national WTD mapping with Danish-data response functions and uses the framework to
compare restoration scenarios (Koch et al., 2023). Although it remains to be seen how
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this data will be used in the context of Denmark’s proposed tax on carbon rich soils,
there is evidence from ongoing qualitative research from RESAS’s JHI-D5.3 Galvanising
Change via Natural Capital project, that the threat of the proposed tax is already
motivating some landowners to sell their land to the state (which is then retiring the
land from agriculture and restoring the peat).

6.8 Conclusion

Ultimately, selection between the options outlined in this appendix needs to balance
messaging to the land management community (given evidence that proposals to
introduce a similar tax in Denmark are already influencing decisions to sell peatlands to
avoid future liabilities) with the risks of piloting a tax using methods that are known to
have significant limitations, potentially undermining the legitimacy of a future tax. In
addition to the research outlined in Section 5 to refine the methodological evidence
base, future work could evaluate tax design options, to ensure equity across diverse
tenure systems (e.g., including the specific liabilities of crofters and tenants,
community and NGO landowners etc), while resolving practical and legal complexities
related to administrative enforceability, dispute resolution, and the potential feasibility
of integrating peatlands into the UK Emissions Trading Scheme instead of a standalone
tax. While peatlands are not currently included within the UK ETS because restoration is
treated under existing accounting rules as an emissions reduction rather than a
greenhouse gas removal, there is ongoing discussion across the UK ETS Authority and
devolved administrations the opportunity for peatland restoration as an active
abatement of a large, ongoing emissions source, that could become a credible future
ETS option as evidence, accounting approaches and governance frameworks mature.
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Appendix 2: Overview of implementation challenges

7.1 Overview of implementation challenges

The practical implementation of a carbon land tax depends on resolving a set of
measurement and administrative challenges that determine whether emissions can be
quantified accurately, attributed fairly, and managed efficiently:

e Measurement accuracy and validity: Methods must reflect net emissions from
peat relative to direct flux measurements, with accuracies proportional to the
greenhouse gases of concern (CO, and CH, at typical magnitudes). Current
inventory approaches provide averaged emission factors for broad peat
categories, limiting precision and the ability to attribute emissions to individual
holdings. Developing proxy-based methods that approximate true fluxes within
defensible margins of error will therefore be central to the tax’s credibility.
Measurement uncertainty remains a primary constraint, and transparent
reporting of error margins and model assumptions is essential.

e Spatial and temporal resolution: Sufficient spatial resolution is required to
allocate emissions reliably to specific landholdings, accounting for the fine-
scale variability in peat condition, hydrology, and vegetation. Emissions also vary
through time with weather and management interventions; hence,
measurements must be frequent enough, ideally at least every three years, to
detect meaningful change. Capturing this variability at acceptable cost will
depend on proxy variables measurable by both remote and ground-based
means, ensuring that change in management practices and restoration
outcomes can be reflected in updated tax assessments.

e Equity, access, and behavioural responsiveness: Landowners must be able to
influence the proxy variables through management decisions so that the tax can
encourage practices that reduce emissions and discourage damaging activity.
However, the system must operate equitably across Scotland’s diverse tenure
systems, including crofts, common grazings, and large estates, without
disadvantaging those lacking technical capacity or access to measurement
tools, or in occupation of land which is naturally harder to access and monitor.
Cost-effectiveness and implementability by land managers are essential design
considerations to avoid excluding smaller or resource-constrained participants.

e Transparency, compliance, and dispute resolution: The tax mechanism must be
transparent in its data sources, modelling assumptions, and procedures,
allowing independent verification and audit. Taxpayers require a clear route to
contest or appeal assessments based on reproducible evidence, and ultimately
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such contest must be capable of accurate determination by a third party. These
measures are vital for public legitimacy, administrative efficiency, and
procedural fairness.

As such, the feasibility of the tax therefore rests on whether a scientifically robust,
replicable and transparent means can be developed to estimate greenhouse-gas fluxes
from peat at parcel scale, at a reasonable cost in relation to the revenue raised or other
public objectives achieved. Direct flux measurements, such as chamber and eddy-
covariance methods, provide reference-quality data but are costly and logistically
demanding for large-scale use (Aubinet, Vesala and Papale, 2012; Baldocchi, 2020). For
this reason, proxy variables are widely used to approximate emissions at larger spatial
and temporal scales through empirical or physical inference. Hydrological state is
particularly important: shallower water tables are consistently associated with lower
net warming effects (Evans et al., 2021). Proxy variables themselves can be measured in
several ways, divided in this report into “remotely sensed” (e.g. satellites or Unmanned
Aerial Vehicles UAVs) and “ground-based” (e.g. dipwells) measurements.

Due to their large scale, remote measurements lend themselves to tax systems where
all tax liabilities are determined by the tax authority. Ground-based measurements lend
themselves to “self-assessment” style tax systems, where landowners are responsible
for measuring the proxy variables on their land, from which their emissions and tax
liability can then be determined by the tax authority. The potential land tax is at an early
stage and the tax system is not fixed; therefore, both remotely-sensed and ground-
based measurements are assessed in this report, and recommendations on
appropriate tax systems are given.

Many models exist to predict GHG emissions from proxy variables, but their accuracy
depends on both the reliability of the measurement of input variables and the strength
of their relationship to actual emissions. This rapid evidence synthesis therefore
prioritises assessing how well the variables approximate GHG emissions compared to
direct measurements, and how these variables can be measured, either remotely or on
the ground. Systematically assessing models for determining peat emissions from the
proxy variables may be prioritised in future research. For example, this report will
examine how well water-table depth predicts GHG emissions compared with flux tower
measurements, as well as how accurately water-table depth itself can be measured. It
will not, however, assess which modelling approach best predicts GHG emissions from
water table depth.
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7.2 lssues with using Tier 2 methods from the UK’s GHG inventory
and Peatland Code as the basis for a tax

The UK’s national GHG inventory currently provides the most comprehensive means of
estimating emissions from peatlands at national scales. However, as a national
reporting methodology, though scientifically robust for reporting purposes, it cannot
resolve emissions with the spatial precision or temporal frequency required for taxation.
IPCC reporting for the Paris Agreement is designed to represent long-term averages that
are insensitive to year-to-year weather variation, ensuring reported anthropogenic
emissions reflect management change rather than climatic fluctuation (Eggleston et al.,
2006). This distinction is especially important in the LULUCF sector, where peat CO,
respiration can vary by around £100 per cent from the long-term mean over a five-year
period (Wilson et al., 2016). Understanding the GHG inventory’s structure and
limitations helps to identify where methodological advances are needed to underpin a
fair and technically credible carbon land tax.

The Tier 2 approach used to determine national yearly GHG emissions from peat
improves upon the default IPCC guidelines in the UK context (Hiraishi et al., 2014;
Evans, C. etal., 2017). Evans, C. et al. (2017) updated emissions factors for UK-relevant
peat emission categories in the IPCC drained land-use categories set out in the 2013
Wetlands Supplement (Hiraishi et al., 2014). The IPCC organic-soil categories
‘grassland’ and ‘extraction site’ categories were disaggregated into drained and
undrained areas, while ‘heather-dominated’ and ‘grass-dominated’ modified bogs were
merged into a single ‘modified bog’ category. The approach also differentiates between
near-natural and re-wetted bogs, improving on IPCC guidance.

Scientific evidence was collated to derive emissions factors per category, resulting in
new UK-specific factors for all categories except CO, from fluvial export of dissolved
organic carbon (DOC) and particulate organic carbon (POC), CH, from drainage ditches,
and indirect N,O emissions from downstream waters. Peat extent is currently defined
using the 1:250,000 National Soil Map of Scotland (full coverage) and the 1:25,000 Soils
of Scotland map (James Hutton Institute, partial coverage) in combination with the
1:50,000 British Geological Survey Geological Map of Britain, applying a slope threshold
to downscale mixed land parcels in mountainous areas. This method achieved a true
positive rate (‘recall’) of 0.68 and a true negative rate (‘specificity’) of 0.84 when
validated against the National Soils Inventory of Scotland. Baseline (1990) peat
emission categories are defined using the Land Cover Map for Scotland 1988 (LCS88)
based on aerial photographs at 1:25,000 scale. LCS88 dominant categories were
mapped to peat emission classes, though some distinctions could not be made due to
limitations in source data. Yearly net emissions are obtained by multiplying the area of
each peat category by its emissions factor.
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Emissions factors were updated in Evans et al., (2023) using new eddy covariance and
chamber evidence. Changes in activity data, thatis, changes in peat emission
categories, are tracked through area accounting rather than mapped change detection,
incorporating data on restoration activity (only those funded/supported by Peatland
ACTION), afforestation and felling (from Forestry Commission records), cropland and
grassland conversions (from land-cover data), and extraction areas (from licences and
satellite imagery).

The current inventory has limitations for direct use in taxation, primarily due to
unavoidable uncertainties in classifying peat extent and condition categories. If peat-
extent classification uncertainties (recall and specificity) persist at rates reported in
Evans et al. (2017) across Scotland, 32 per cent of peatland would remain untaxed and
16 per cent of non-peatland could be incorrectly taxed. Further uncertainty arises from
peat condition classification, for which error has not yet been fully quantified.

The Peatland Code takes a related but more operational approach to quantifying
avoided or reduced emissions. For bogs, it also uses emissions factors, directly aligned
to the Tier 2 inventory, and applies them to condition categories that represent discrete
ecological states. These categories, used in both the Peatland Code and UK GHG
Inventory include ‘actively eroding’, ‘drained’, ‘modified’, and ‘restored’ states. The
Peatland Code uses the difference in emission factors between these condition
categories to estimate emission reductions from restoration activity, rather than
attempting to model fluxes directly. This reduces the costs of monitoring at each site
and makes the scheme operational. Each project is assigned baseline and post-
restoration condition classes using field survey data and remote-sensing evidence,
which is checked by independent third-party assessors, and the area within each
condition category is then multiplied by the corresponding emissions factors to
calculate net emission reductions. This discrete-category approach aligns conceptually
with the national inventory but serves a different purpose. It prioritises verifiability at site
scale and permanence over comprehensive spatial coverage, and updates emission
factors periodically to reflect new evidence from flux-tower and chamber studies.
However, like the Tier 2 approach, it is limited by the accuracy of condition classification
and the assumption that all areas within a category share a uniform emissions factor,
wherever they are located in the UK. This is acceptable for the Peatland Code and the
UK inventory because applying a category mean across the national area is intended to
balance over- and underestimation at aggregate scale. For taxation, the same averaging
creates problems at site scale. Parcels in the same condition category can have
materially different emissions depending on hydrology, vegetation and climate, so
liabilities tied only to categories will not move with management until a reclassification
threshold is crossed. In many cases reclassification may take years, during which
landholders who have invested in effective re-wetting would face unchanged liabilities
despite real reductions in emissions that are not yet reflected in a category change. It

44



might also be observed that participation in the Peatland Code is voluntary whereas the
payment of a tax is mandatory. A tax liability must therefore be based on a higher
threshold of liability assessment.

Due to the lack of Tier 2 emissions factors in the UK GHG inventory the Peatland Code
takes a different approach for fens. Here projects must measure their water table depth
pre restoration and throughout the whole project lifetime. The average annual water
table depth is then used in combination with the condition category to model the
emissions, and from the difference in emissions pre and post restoration the emissions
reductions are calculated.

7.3 Other Countries’ National Inventory Approaches

Approaches used in Germany, Denmark and the Netherlands focus on the variables
driving emissions. Germany reports emissions from organic soils with a spatial Tier 3
method that relates CO, and CH, to long-term mean annual water-table depth using
response functions fitted to national chamber measurements, implemented on a
national grid and compiled for UNFCCC submission (Barbel Tiemeyer et al., 2020;
German Environment Agency, 2025). High-resolution maps of land use, organic soil type
and WTD underpin country-specific response functions for CO, and CH,, derived from a
large chamber dataset and implemented in the national inventory (Barbel Tiemeyer et
al., 2020; FuB et al., 2025; German Environment Agency, 2025). Although a constant (in
time) map for mean annual WTD is used in the German inventory to align with IPCC
reporting principles, the framework allows for the use of time-resolved WTD data to
better capture the effects of re-wetting on emissions (German Environment Agency,
2025). This aligns well with data available from ongoing restoration monitoring and
provides a potentially auditable signal for tax liability adjustments as water levels are
raised.

Denmark has developed methods based on national WTD mapping and water-table-
emission response functions fitted to Danish flux data, which are then used to estimate
emissions and compare restoration scenarios (Koch et al., 2023; Nielsen et al., 2025).
This has included the development of a high-resolution WTD map for Danish peat soils,
non-linear CO, and CH, response functions with strongest sensitivity in the upper 0-0.5
m, and uncertainty analysis to test rewetted versus drained cases (Koch et al., 2023)
consistent with parallel national mapping efforts to update peat and organic-soil extent
used in inventory workflows (Gyldenk et al., 2023). In the proposed tax context,
agricultural peat soils are generally assumed to be drained (and therefore high-emitting)
where a field is classified as peat (commonly defined in Denmark as >6% C), with the
highest CO, emissions associated with groundwater depths beyond c. 40 cm,
consistent with Tiemeyer et al. and confirmed in Danish analyses; where peat is shallow
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(e.g. <40 cm), emissions may be treated as lower (for example, around half). The
temporal aspect is not generally modelled directly unless land is taken out of
agriculture, with liability instead linked to land status (e.g. continued agricultural use
versus rewetting). Denmark’s approach aligns technical inventory practice with a
planned future carbon emissions land tax on non-energy agricultural emissions using
uniform CO,-equivalent pricing (which explicitly notes emissions from carbon-rich
agricultural soils; Expert Group 2024). However, proposed peat-soil tax rates are
substantially lower than those faced by ETS-covered industry, and the practical
incidence of tax depends strongly on peat classification: if a field is mapped as peat but
is actually mineral soil, the owner/user could be overcharged, reinforcing that the
performance of the peat map is central to both fairness and dispute risk. As a
consequence, work is underway on a sensor-based appeal system if earlier peat maps
are used as the basis for taxation, and additional work has been proposed (not yet
adopted) on improved high-resolution peat mapping (including approaches using
drone-borne TEM and gamma sensors). Farmers may avoid the tax by entering an
agreement to rewet land (with compensation), and may also sell land to government or
receive replacement land. Taxation is planned to start on 1/1/2028, but it has not yet
been decided whether the landowner or the user should be liable for the tax (pers.
comm. Mogens Humlekrog Greve, 2 December, 2025).

The Netherlands splits organic soils into coastal peatlands, which cover about 72% of
the organic soil area, and uplands. Coastal peatlands use a Tier 3, parcel-level
ensemble (Erkens et al., 2022) that couples a groundwater model (PP2D) with a carbon
decomposition model (AAP), calibrated against the Netherlands Research Programme
on Greenhouse Gas Dynamics in Peatlands and Organic Soils (NOBV) flux network
(NOBV, 2019, 2023), with outputs used to derive emissions factors, which are used in
GHG reporting (Schelhaas et al., 2024; Baren et al., 2025). Upland peatlands retain a
Tier 2 method in which both methane and carbon dioxide emissions are derived from
emissions factors (Baren et al., 2025). However, it is worth noting that emissions factors
for carbon dioxide were developed using measured or inferred ground-surface
movements linked to ditch water level or mean lowest groundwater level, which could
form the basis for future Tier 3 methods that could, similar to the SOMERS parcel
outputs, provide hydrology-responsive CO, estimates at scales relevant to changes in
land management.

In summary, the UK Tier 2 assigns fixed factors to categories such as near-natural,
modified, drained and rewetted bogs, and tracks change mainly through area updates.
In contrast, Germany and Denmark relate fluxes to WTD and the Netherlands links
carbon dioxide emissions to subsidence in intensively drained peat, which may be
altered via changes in management and are therefore easier to be adapted to the basis
of a carbon tax. Continuous driver-based methods are more sensitive to management
at parcel scale and better capture restoration effects between discrete category
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thresholds, which is relevant for a tax intended to reduce liabilities as water levels
recover. The adoption of water-table-driven estimation for organic soils within the UK’s
inventory framework could align any liability calculation with inventory methods and
update cycles used for reporting to UNFCCC, so that verified rewetting reduces
assessed emissions and tax in step with inventory evidence.

7.4 Financing restoration

Consideration must also be given to the means available to landowners to finance
restoration. The cost of restoration varies from site to site however is typically upwards
of a thousand pounds per ha., meaning that for larger sites the total cost may run into
hundreds of thousands of pounds (Glenk et al., 2022). Current financing options
include capital investment grants available through the Peatland Action program and
carbon finance utilising carbon credits awarded by the Peatland Code.

The introduction of a land carbon tax may complicate this funding environment by
prompting a need to consider Peatland Code additionality. Additionality is a key
concept underpinning the integrity of carbon finance, yet operational rules applied to
determine additionality differ between codes. Recognising that the aim of introducing a
tax would be to create an incentive toward restoration, it would be appropriate for this
incentive to be accounted for in assessment of whether the anticipated emissions
reduction is additional to the baseline trend. The current additionality rules within the
Peatland Code utilise a carbon finance test which would not account for this incentive —
as it relates more narrowly to the proportion of funding from carbon finance as
compared to other sources. Were a tax to be implemented, it may be necessary
however for the Peatland Code to reconsider this arrangement and potentially provide
further justification of additionality. Were additionality to instead be assessed on the
basis an investment test, as is currently the case for Woodland Carbon Code and
international standards such as Verra and Gold Standard, it is likely that many projects
would fail to pass and not be eligible for carbon credits, due to the fact that there would
already be a strong incentive in place for landowners to engage in peatland

restoration. Additional modelling would however be required in order to understand this
outcome since without appropriate financing in place, from carbon finance or other
sources, landowners may not be able to bear the cost of peatland restoration.

It might also be added that in its broadest sense, additionality requires that where an
obligation has arisen then no further financial support (private or public) should be
available. This would raise the further complication of the categorisation of a taxin
terms of additionality. On the one hand as a measure to force land managers to restore
land, the general principle of additionality may be offended; on the other hand as
merely a financial obligation that can be avoided by management measures,
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additionality may not be regarded as an issue at all beyond the requirements of any
financialtests in place.

7.5 Peat mapping baselines for tax administration

England’s new Peat Map (Natural England, 2025) is a useful benchmark for improving
Scotland’s peat extent and condition baselines, but it also illustrates limits of national-
scale modelling for regulatory use. The Natural England report documents a modelling
stack that combines field surveys with satellite, LiDAR and ancillary predictors to map
peaty-soil extent, depth, vegetation and upland erosion features, with published
accuracy and confidence layers. Reported validation for peaty-soil extent is high and
vegetation mapping is accurate overall, but agreement varies by vegetation class. The
validated map outputs (specifically the peat-extent and vegetation-class rasters,
together with their confidence layers) can provide an auditable screening baseline to
identify where peat is likely, prioritise survey effort and plan restoration. Because some
vegetation classes are harder to distinguish, such outputs should only be used to guide
screening and targeting rather than determining liability without local verification.

The map reported high accuracy metrics but making it clear that not all predictions
would be correct. This led to multiple public critiques, suggesting systematic
misclassification by the England Peat Map, including predictions of peat on rocky
outcrops, stone features and woodland, alongside omissions where peat is known
locally (Envirotech Online, 2025; NFU, 2025; The Times, 2025). However, public
reporting of misclassifications likely focused on places where the map was incorrect
but it not clear if there is indeed systematic bias in the model. Likely causes, based on
limitations identified by Natural England (2025) and well-documented constraints of
optical and LiDAR peatland mapping (Kuhn et al., 2024; Honkavaara et al., 2023; Bonn
et al., 2024), include class confusion between peaty and mineral soils, mixed pixels at
10-30 m, seasonal/phenological effects on optical signals, LiDAR artefacts on steep or
rocky ground, noisy historic labels, and threshold choices that trade sensitivity for
precision.

In parallel with Natural England’s national modelling, Scotland-specific work led by the
James Hutton Institute (JHI) is building a routinely refreshed peatland condition
baseline using high-resolution imagery and machine-learning, intended for regular
updating as new data arrive. It integrates recent satellite/UAV imagery, training data
from field campaigns, and classifier ensembles to map condition states, with an explicit
goal of supporting restoration planning and policy use at operational scales (The James
Hutton Institute, 2024). However so far, there has only been one static mapping effort. A
complementary JHI programme focuses on drainage and erosion features that drive
emissions and restoration costs, using deep-learning models to detect grips, gullies
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and other surface indicators across Scotland at finer spatial resolution than legacy 100
m products. The team has released an open dataset and describes the rationale as
enabling more precise inventory inputs and restoration targeting where surface
variability is much finer than national soil maps capture (The James Hutton Institute,
2025b, 2025a). Recent JHI-National Library of Scotland work also mines historic
Ordnance Survey maps with Al to identify “missing” Moorland, rough grassland, and
peatland signatures, strengthening training/validation in areas where modern labels are
sparse and helping reconcile discrepancies between historic and current condition
signals (The James Hutton Institute, 2025b)

Both the JHI approach and Natural England’s England Peat Map aim to provide national,
evidence-based screening layers for peatland extent, condition and surface features.
Natural England’s approach focusses on providing national layers for each variable,
with clear user guidance and data governance, whereas JHI’s approach puts more
weight on frequently refreshed, higher-resolution detection of condition drivers such as
drainage and erosion. Future development of the JHI map might usefully provide
versioned releases with clear product definitions, confidence rasters and plain user
guidance. Versioning would record what changed, when and why, so estimates used for
tax can be traced and reproduced. Unambiguous product definitions would prevent
disputes about what each layer represents and how it should be used. Pixel-level
confidence rasters would allow tax authorities to treat high-confidence pixels as
adequate for desk decisions, flag medium-confidence areas for targeted review, and
mandate field checks where confidence falls below a stated threshold. User guidance
should define those thresholds, specify appropriate use at parcel and holding scales,
and list the evidence required to challenge or correct a classification. Together these
measures would reduce ambiguity, support independent audit and simplify
maintenance as methods and data are updated.
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Appendix 3: Review methodology

8.1 Direct measurements

Chamber methods

Peat chambers have been used to measure emissions from soils for over 100 years
(Pavelka et al., 2018). The aim is to cover a defined area of ground with a PVC chamber,
allowing for the exchange of gases between the soil and chamber headspace.
Measuring the change in concentration of gas over time then allows an estimate of the
net flux of gases between soil and atmosphere (Pihlatie et al., 2013). Peat chambers
are commonly used to measure CO,, CH4, N,O, however the optimal chamber design
and sampling strategy depends on the particular GHG gas targeted by study (Pihlatie et
al., 2013).

A key difference in measurement technique is the choice of static (manual) versus
dynamic (automated) system. Within static chamber systems gas is manually sampled
by syringe and then transported from site for analysis by gas chromatograph.
Automated chamber systems meanwhile use an in- situ gas analyser to measure gas
concentration allowing for multiple repeated measurements. Automated systems need
power supplies and are limited by the number of chambers versus the length of supply
lines to and from the analyser while static chambers require frequent visits to the site.
Greater frequency of measurement may better capture daily and seasonal dynamics in
GHG cycles, however dynamic systems may not always be optimal and among
measurement of peatland emissions, static systems continue to be most common
(Boonman et al., 2024). Dynamic systems have been most commonly applied to
measuring CO,, since (typically) larger fluxes place less reliance on the sensitivity of the
gas analyser and enable shorter enclosure intervals, while static systems are
commonly used for measuring N,O or CH, (Pihlatie et al., 2013). However, the
development of faster gas analysers has enabled automatic systems to be used to
estimate CH, and N2O.

Whichever system is used, to provide an accurate estimate of annual emissions it
would be necessary to ensure that sampling accounted for variation in conditions
across site and was conducted throughout the year to capture seasonal changes in
emissions. Since this may entail hundreds if not thousands of individual chamber
samples per site each year, peat chambers do not offer a practical means of
nationwide monitoring to support a land carbon tax.

Various factors have been identified in the literature as influencing the accuracy of
estimated fluxes, and to reduce bias itis important to (Juszczak, 2013):
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e use afanto prevent stratification within the chamber

e allow for pressure compensation between chamber and outer atmosphere

e ensure chamber is properly sealed

e review chamber readings and address outliers which may reflect to mistakes of
person conducting experiment (static chambers), improper closure of chambers
(automatic), or result from chamber artefacts such as condensation

e rotate plot locations to reduce impact of chamber deployment on vegetation
due to rain shadow (Boonman et al., 2024)

e avoid measurement on windy days (Yao et al., 2017)

e ensure appropriate application of linear/ exponential estimation technique.

Eddy Covariance

The Eddy Covariance (EC) method for measuring atmospheric fluxes of gasses uses a 3-
dimensional wind speed detector (3D sonic anemometer) and an analytic method for
measuring gas concentrations attached to tower to measure gas fluxes at the
landscape scale. The measurements assume that the majority of gas transport to and
from the atmosphere is via eddies (swirling parcels of air). By measuring the changes
(covariance) in the upward/downward velocity of air with the concentration of gasses
they can estimate gas, heat and vapour fluxes. In practice, EC tower alignment and data
go through quality control because the method relies on several assumptions about the
atmosphere, the landscape and tower height. When these assumptions break due to
sudden weather changes, uneven terrain, low eddy activity, or winds coming from the
wrong direction the measurements become less reliable. The tower height and location
are selected to ensure that the measurements represent the ecosystem and above the
messy airflow zone so that the air is well mixed and representative of the landscape
rather than one small parcel of land. Additionally, quality control filtering identifies and
removes periods of weather changes or when the wind is coming from the wrong
direction so the final fluxes represent ecosystem behaviour. The literature generally find
high correlations (R?=0.86) with chamber measurements, even when footprint size and
wind direction are not accounted for (Laine et al., 2006). However, differences between
chamber and EC measurements are expected, and interpreting these discrepancies
requires specialist expertise.

The challenge in using EC as the basis for a carbon tax is achieving enough spatial
coverage of peatlands while still meeting the strict quality-control requirements
described above. To meet the tax-criteria, all emissions from peatlands owned by a
landowner must be measured, and only emissions originating from peat under their
ownership should be attributed to that landowner. Therefore, flux tower networks will
have to be placed in coordination with ownership boundaries and the above factors to
meet these two requirements resulting in hundreds or possibly thousands of towers

51



(authors’ interpretation based on complex geometry of ownership boundaries and
Scotland’s terrain). Furthermore, since all peat emissions should be measured, it will be
hard to differentiate between peat and other GHG sources for peatland near roads,
houses, agriculture or other GHG sources.

8.2 Methods Background and Search terms

Selection of proxy measurements

Proxy measurements were selected based on discussions with the Scottish
Government and the funder. The search strings were broadened to include the variables
that proxy measurements observe (called “proxy variables”). For example, INSAR (proxy
measurement) measure temporal- and spatial- changes in surface elevation (proxy
variable). Including proxy variables in the search string broadened the evidence review
to include papers which used ground-based measurements as well as remote sensing
techniques.

Peat Greenhouse Gas Emissions terms and definitions

Individual search strings were developed for each proxy measurement. However, they
all shared common terms (Error! Reference source not found.) designed to capture
studies which directly measured peat GHG emissions and compared them to another
prospective measurement.

The vocabulary of peat emissions literature often uses jargon which we list here and use
consistently throughout the report:

e Gross Primary Productivity (GPP): The total amount of carbon fixed by
photosynthesis.

e Net Primary Productivity (NPP): The amount of carbon that remains in plants
after what they use for their own respiration. NPP=GPP-R,, where R, is the rate of
plant respiration.

e Gross Ecosystem Exchange (GEE): Measured total CO, uptake. Should be the
same as GPP but is used when measuring carbon fluxes at the eco-system scale,
e.g. with EC towers.

e Net Ecosystem Exchange (NEE): The net CO; flux between the ecosystem and
the atmosphere accounting for respirations by autotrophs (plants) and
heterotrophs (animals and microbes). NEE = Reco — GPP, where Reco = Ra+Rnand Ry
is heterotrophic respiration. When NEE is negative, the ecosystem is a CO; sink,
if its positive it’s a CO, source. Net Ecosystem Productivity (NEP) is the negative
of NEE while accounting for system offtake by animals etc.

e Net Ecosystem Carbon Balance (NECB): Balance of carbon in all its forms
entering and leaving an ecosystem. NECB=-NEE-CH,flux-DOC-VOCloss-Offtake
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where CH,flux is the methane leaving the system, DOC is the dissolved organic

carbon leaving the system, VOCloss is loss of carbon as volatile compounds and
Offtake is the carbon that is physically removed from an ecosystem by humans
or animals. When NECB is positive the ecosystem is a carbon sink.

The peat GHG balance used this report can be expressed as

GHG = (R, + Ry, — GPP)

+CHE™ X GW Py,
+N, 0" GW Py, o
+(DOC +VOC) X pey, GW Peyy + (DOC + VOC) X peo

where R, and R, [kgCO.] are autotrophic and heterotrophic respiration respectively,
GPP [kgCO,] is the Gross Primary Productivity, C HY"“* [kgCH.] is the net methane flux
into the atmosphere, N, 0F"%* [kgN,O] is the next flux of nitrous oxide into atmosphere,

DOC and VOC [kgC]is carbon lost as dissolved and volatised organic matter

respectively -pcys [kgCHakg'Cland pco, [kgCO, kg'C] are the proportions of that lost

carbon which is converted to methane and CO; respectively’ and GW Py, and

GW Py, are the global warming potentials of methane and nitrous oxide respectively.

The first line represents the (NEE), the second the methane balance, third the nitrous

oxide balance and fourth the carbon loss downstream. These terms will be used in the

summary of findings Table 2.

Table 23: Search terms shared amongst all proxy methods/measurements assessed.

Greenhouse gas exchange

Greenhouse gas
language

Ecosystem
exchange
language

“CH4 emission*” OR “C0O2 emission*” OR “N20 emission*” OR
“CH4 flux*” OR “CO2 flux*” OR “N20 flux*” OR “CH4 exchange*”
OR“C0O2 exchange*” OR “N20 exchange*” OR "methane" OR
"carbon dioxide" OR "nitrous oxide" OR “GHG” OR "carbon flux*"
OR “carbon exchange”

“Net ecosystem carbon balance” OR “Net ecosystem exchange”
OR “Net ecosystem production” OR "carbon balance" OR
"carbon exchange" OR "ecosystem respiration" OR "soil
respiration"” OR "net primary production" OR “ecosystem carbon
exchange” OR “Carbon uptake” OR “Carbon sequestration” OR

(AND) Peatland

“Peatland” OR “peat” OR “organo-mineral” OR “mire*” OR “fen*”
OR “bog*” OR “wetland*”

(AND) Direct measurement mode

Flux tower

“Eddy covariance” OR “Flux Tower” OR “Flux-tower” OR “Tall
tower” OR “Tall-tower” OR

3These should be different for VOC and DOC respectively.
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Chamber Method “Chamber* system” OR “static chamber*” OR “dynamic
chamber*” OR “automated chamber*” OR "closed chamber*"
OR "open chamber*" OR "automatic chamber*" OR "manual

chamber*"
(AND) Evaluation criteria
Comparative “Accuracy” OR “estimation” OR “*error” OR “measurement” OR
accuracy “R-squared” OR “R squared” OR “Cost” OR “price” OR

“expenditure” OR "uncertainty" OR "bias" OR "precision" OR
"validation" OR "calibration" OR "agreement” OR "comparison"”
OR "evaluation" OR
Cost “Cost” OR “price” OR “expenditure” OR “viability” OR
effectiveness “feasibility”

8.3 Proxy Variables and Measurements

8.3.1 Water-table depth

The position of the water table is an important control on biophysical processes in
peatland ecosystems. Waterlogged conditions limit soil oxygen availability. Water and
oxygen availability together control plant and bacterial activity, which in turn affect CO,
and CH, emissions.

Soil oxygen availability determines the pathways through which microbes can break
down organic matter. Within waterlogged soils, a scarcity of oxygen and other electron
acceptors means that microbes must commonly resort to less efficient methanogenic
pathways, slowing the decomposition of organic matter (Bridgham et al., 2013).
Through this, sustained waterlogged conditions lead to long term accumulation of
organic matter as peat. When the water table lowers, this creates more favourable
conditions for microbes to break down organic matter in the soil, increasing CO,
emissions to the atmosphere from bacterial respiration. However, since wetter
conditions favour a shift to methanogenic pathways, a sustained increase in the water-
table (i.e. shallower water table), tends to lead to an increase in methane emissions
(while CO; emissions decrease) (Gunther et al., 2020a).

The availability of water and oxygen in soil also controls plant activity. Water is required
in photosynthesis and therefore the water table influences plant growth and the level of
CO, that is fixed by plants growing on peatlands. Meanwhile plant respiration is further
limited by the availability of oxygen in soil and therefore the level of CO, emitted due to

plant respiration is also indirectly controlled by the position of the water table.

The change in Net- Ecosystem Carbon Balance - that is, the change in CO; equivalent
emissions — depends on the relative magnitude of changes in CO, and CH, emissions.
While peatlands are normally found to be small net sinks, studies indicate that
rewetting of drained/modified peatlands may result in a spike in methane production
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(Kandel, Elsgaard and Laerke, 2017; Schaller, Hofer and Klemm, 2022; Antonijevic et al.,
2023; Kalhori et al., 2024; Delwiche et al., 2025). Over the short run, elevated methane
emissions may be sufficient to cause a net increase in total GHG emissions (Kandel et
al., 2020), before emissions decline over the long run and the peatland becomes a net
sink (Gunther et al., 2020b). It is, however, important to note that peatland restoration
results in net GHG reductions of considerable magnitude by preventing losses of
carbon from ongoing degradation in drained peatlands.

Modes of measuring water table depth

Water table may be measured using a dipwell (PVC lined perforated pipe) inserted into
the ground, either manually using a dip meter, or continuously using a pressure
transducer connected to a data logger. In the case of the latter, the pressure reading has
to be corrected for changing air pressure either directly using a ‘vented’ system design,
or via a data processing correction using a nearby air pressure sensor, so that the
system reports water level changes, rather than just pressure changes. Multiple
measurement points are required to ensure appropriate representation of site
conditions. Modelled results in this section relate to mean annual water-table depth,
indicating that a regular measurement regime would be required to capture variation in
water table across the year (Table 3).

Table 3 4: Additional search terms regarding Water Table

Water Table
Water Table "“Water table” OR “Water table depth” OR “Moisture Probes”
OR “dipwells” OR “dip-wells” OR “dip wells” OR “rewetting”
OR “re-wetting” OR “restoration” OR “drained” OR
“undrained” OR “ground water level”

8.3.2 Topography

Topography can be an important proxy for estimating emissions since changes in
surface height can be used to assess erosion and features (hags) vulnerable to erosion.
Additionally, small increases in height over time can be indicative of moisture changes
events, accumulation of organic matter and methane ebullition events. It is important
to measure topographic features at appropriate scales due to the fractal nature of
ecosystem-surfaces. For example, hummocks (higher CO, emissions), hollows (lower
CO; emissions) and erosion should be measured at the cm to m scale while gradients
and pools at the 10s to 100s m of scale are important for watershed hydrology.

Aerial LiDAR (Light Detection and Ranging) measures topography through the bouncing
of laser pulses off of objects in the terrain. Lasers are emitted towards the ground and
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the time it takes for the laser to return is measured, from which the relative height of the
area that the laser interacted with can be calculated. The detector can measure
multiple bounces (“returns”) from one pulse such that if deployed within a forest
canopy, it can first measure the return from the canopy, then the return from the ground
(provided enough signal can get to and from the ground). From this information, point
clouds can be formed showing the geometry of both the Earth’s surface and vegetation
layers. The intensity of the laser light returning in the pointcloud is indicative of surface
reflectivity. This is useful for measuring vegetation depth and the topography of peat
under forests (Yallop, Thacker and Clutterbuck, 2024). Digital Elevation Models (DEM) of
topography are sub-divided into Digital Surface Models (DSM), which represent the
elevation of the earth’s surface including ‘things’ on top of it such as buildings or trees,
and Digital Terrain Models (DTM), which represent the elevation of the bare earth. The
latter can be reliably constructed using LiDAR. Typically, DTMs are required to assess
peat functionality including hydrology and emissions. Since laser light is never perfectly
parallel, the footprint of the laser increases linearly with collection height. Typically,
from an aircraft at 1,000 m above ground level, the laser will have roughly a 1m diameter
footprint, (Yallop, Thacker and Clutterbuck, 2024).

Aerial photographs can also be used to evaluate surface height. If one location is
viewed from at least two separate angles, parallax (depth perception) can be used to
determine the height of the location. However, this method cannot measure objects
beneath canopies.

Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) are a satellite
techniques that use microwave signals reflected from earths Surface. SAR measures
the intensity of the microwaves returning (back-scatter) which depends on surface
properties such as roughness, vegetation structure, and moisture content. In wetlands
and peatlands, changes in WTD influence soil and vegetation moisture, which affects
the dielectric properties of the surface which, in turn, affects how the microwaves
interact with the surface. When the water table is close to the surface, soils and
vegetation are wetter and tend to produce stronger backscatter signals. Conversely,
when the water table drops, soils dry out, and backscatter generally decreases.

INSAR uses two separate signals of the same location and measures the phase (i.e.
position in the wave cycle) of the returning signals are measured. Changes in phase
between the signals can be used to determine changes in elevation. However, due to
the repeating nature of the phase, if the phase shift is greater than half the wavelength,
the exact change in elevation cannot be determined as there is no way to tell the
difference between half-wavelength multiples of the phase shift (i.e,. it can only
determine elevation changes modulo half-wavelength). This limitation can be
overcome using a technique called phase unwrapping. By assuming elevation changes
between neighbouring pixels are bounded, phase-shifts between nearby pixels can be
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used to distinguish between half-phase multiples and exact changes in elevations can
be estimated.

Due to its high accuracy at small spatial scales, INSAR can detect bog breathing*
(Tampuu et al., 2022), which is believed to be indicative of peatbog function due its
relationship to moisture content and loss of peat mass. Bog breathing may have a
significant impact on peat carbon-stocks or mass loss via surface height
measurements (Morton and Heinemeyer, 2019). Bog breathing is also linked to
ebullition, the sudden release of gas stored below the soil surface. These short-time
scale events can contribute significantly to yearly methane emissions but are hard to
measure with INnSAR due to temporal resolution. In addition, dense peat can trap gas
bubbles for lengthy periods leading to the decoupling of methane generation (a function
of temperature and moisture conditions) to methane release and measurement
(Ramirez et al., 2015), making it hard to correlate proxy variables to emissions. If instead
the gas is released steadily, the methane within them can be consumed in the drier
oxygen-rich layers converting the potent GHG into CO, thus reducing the net global
warming potential (Rosenberry, Glaser and Siegel, 2006). and its measurement can
improve and explain variability in emissions measurements (Table 4).

Table 4 5: Additional search terms regarding microtopography

Microtopography

General Surface "bog breathing" OR "surface oscillation*" OR "peat surface

elevation motion" OR "peat surface movement" OR “surface elevation”

INSAR “InSAR” OR

LiDAR "LiDAR" OR “Light Detection and Ranging” OR "airborne laser
scanning" OR "ALS"

Photogrammetry "photogrammetry" OR "structure from motion" OR "SfM"
"photometric stereo" OR "stereo photogrammetry" OR
"stereophotogrammetry"

8.3.3 Spectral Earth Observations

Earth Observation (EO) refers to the collection and analysis of data about the Earth’s
surface and atmosphere using sensors such as satellites and aerial drones. Spectral
Earth observations, which rely on reflected or emitted light to infer vegetation and
surface properties are particularly useful for assessing peatland photosynthetic activity
and possibly hydrological status.

Vegetation indices (VIs) are functions of surface reflectance values from different wave-
length bands (e.g. red, near-infrared (NIR), and shortwave infrared (SWIR)) derived from
satellite or aerial sensors. They are designed to isolate the parts of reflected light that
are associated with plant function. In the context of peat emissions, Vls act as proxies

4The rising and falling in peat elevation as the peat gets wetter in winter and drier in summer.
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for photosynthetic activity (via chlorophyll absorption) and can be interpreted to be
associated with water stress and plant health. All Vils used in papers cited in this review
to predict GHG emissions from peat are summarised in Error! Reference source not
found..

Fluorescence and physiological indices, e.g. Solar-Induced Chlorophyll Fluorescence
(SIF), directly measure plant function rather than light reflectance. While reflectance
indices measure light reflected from leaves to infer greenness or water content,
fluorescence and physiological indices capture light re-emitted or reflectance shifts
linked to photosynthetic efficiency and light use efficiency (LUE). These indices can
provide more direct insight into how plants convert absorbed photosynthetically active
radiation (PAR) into carbon through photosynthesis.

Additional search terms for spectral earth observations used in the targeted literature
search are found in Table 5.
Table 56: Definition of the most relevant commonly used reflectance-based vegetation indices to be approximate

emissions from peat identified during review. Studies cited in this report may use different equations dependent on
sensor used. This has not been compared in this report.

Primary Sensitivity /
Index Full Name .
Interpretation

Normalized Classic greenness index;
NDVI Difference correlates with chlorophyll
Vegetation Index  content and canopy density.
Reduces atmospheric and soil
Enhanced
EVI ) background effects; performs
Vegetation Index . .
better in dense vegetation.
Two-band Simplified EVI excluding blue
EVI2 Enhanced band; used when blue

Vegetation Index reflectance is unavailable.

Early greenness metric;
SR Simple Ratio directly related to canopy
chlorophyll and leaf area.

Kernel .
. Nonlinear form of NDVI;
Normalized L
kNDVI . enhances sensitivity to
Difference

i canopy structure.
Vegetation Index
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NIRv

GRVI

NGRDI

Red-
edge
Cl

NDWI

NDMI

LSWI

MWI

Near-Infrared
Reflectance of
Vegetation

Green-Red
Vegetation Index

Normalized
Green-Red
Difference Index

Red-edge
Chlorophyll Index

Normalized
Difference Water
Index

Normalized
Difference
Moisture Index

Land Surface
Water Index

Modified Water
Index

Separates vegetation signal
from background reflectance.

Sensitive to canopy greenness
and seasonal phenological
changes.

Similar to GRVI; widely used
for RGBRGB UAVSs.

Sensitive to chlorophyll
concentration and
photosynthetic potential.

Indicates vegetation and
canopy water content.

Similar to NDWI; detects plant
and soil moisture.

Similar to NDWI. detects plant
and soil moisture.

Sensitive to vegetation and
canopy water content.
Indicates vegetation moisture
or stress levels.

Table 67: Fluorescence and Physiological Indices that have been found to be used to approximate emissions from
peatin this review.

Index / . . L )
. Definition Primary Sensitivity / Interpretation
Variable
Solar-Induced Weak red/far-red light (650-800 nm) emitted by
SIF Chlorophyll chlorophyll during photosynthesis. Direct proxy
Fluorescence for photosynthetic activity.
LUE Light Use Efficiency Ratio of carbon fixed to absorbed PAR (GPP =

PAR x fAPAR x LUE). Often modelled using
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PAR

vegetation indices and environmental stress
terms.
) Portion of solar radiation (400-700 nm) available
Photosynthetically

. Lo for photosynthesis; key input to LUE and
Active Radiation

photosynthesis models.

Table 68: Additional Search Terms Regarding Spectral Earth Observations

Spectral Earth Observation

Satellites and
research programs
Vegetation Indices "Vegetation indices" OR "NDVI" OR "MTCI" OR "EVI" OR "SAVI"

OR "PRI" OR "LAI" OR "FAPAR" OR "NDWI" OR "Spectral
index*" OR "Spectralindices" OR "remote sensing index*" OR
"remote sensing indices" OR

Light use efficiency

8.3.4 Erosion

Lost organic matter from erosion can be emitted as CH, or CO,downstream which is
important when reflecting total GHG emissions from degraded peat.

Erosion of soilis typically measured using:

Direct measurements such as erosion pins and stream water sampling.

Isotopic tracers which can trace eroded material based on N or C isotope ratios.
Fallout radionuclides (FRN) which measure concentrations of isotopes e.g. 2'°Pb
deposited on the land surface, in soil cores which can date soil layers.
Geochemical fingerprinting where chemical fingerprints (e.g. ratios of rare earth
elements) of eroded material can be traced back to its source.

Search terms used for systematic peat erosion are found in Error! Reference source
not found.. However, we note that direct measurements of GHG and erosion

measurements are typically not performed in single studies since the emissions occur

off-site. Therefore, the strict search terms in Table 2 likely miss important literature on
this topic.

Table 7 9: Additional Search Terms Regarding Erosion

Erosion

Fallout radionuclides
(FRNSs)
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Geochemical
fingerprinting

Isotopic tracers
Direct physical
measurement
methods

“rare earth element*” OR “REE tracer*”

“erosion pin*” OR “erosion bridge*” OR “profile meter” OR
“erosion marker horizon”
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Appendix 4: Review findings

9.1 Drivers of Peat GHG emissions

The predominant proxy variables which control components of the Peat GHG balance
are identified in Error! Reference source not found. below. The drivers of each
component were determined from the review of water-table depth and spectral earth
observations which can be found in Section 9.3 and 9.4. The drivers are ranked (from
left to right) according to their overall importance in predicting the GHG components.
For instance, the most significant control on Gross Primary Productivity in most
conditions is light and leaf area, followed by temperature, water-table depth, and soil
nutrients and pH. This ranking seeks to provide an overall indicator of importance
caveated that in reality, these rankings depend on site specifics and the relative
contribution of drivers in specific circumstances continues to be debated within the
literature.

As can be seen from Error! Reference source not found., WTD and soil temperature
are common drivers across all GHG components.

Table 810: Important proxy variables (“Drivers”) for predicting individual component in the peat GHG balance at the
yearly time scale. Drivers are listed in approximate order of importance; however, the order may vary dependent on
conditions and are debated in the literature. Greenhouse Gas (GHG) components are Gross Primary Productivity
(GPP); autotrophic and heterotrophic respiration (R, and Ry, respectively); methane flux (CH5™*); nitrous oxide flux
(N, OF™)_Drivers are Soil Temperature (Temp); Water Table Depth (WTD); soil nutrient status, particularly nitrogen
Nutrients/pH); Ebullition refers to the sudden release of gas from peat. was not examined in this review and drivers
are inferred from understanding of the mineral-soil nitrogen cycle.

GHG .
Key Drivers
Component
GPP Light & leaf area index > Soil Temp > WTD >
Nutrients/pH
R, GPP
Ry WTD - Soil Temp > Nutrients/pH
CHfl“x WTD - Soil Temp >Plant species >Ebullition
NZOF““‘ Nutrients/pH (esp. N availability) > WTD ~ Soil Temp

9.2 Accuracy of measurement methods

Potential methods of measuring the drivers of peat GHG emissions are listed in Error!
Reference source not found. in the main text. The degree to which each measurement
method accurately reflects drivers of each emissions component is given a qualitative
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score based on how successfully the measurement method has been used to
approximate the driver within models of the emission components identified within the
literature search. Importantly, this qualitative accuracy scoring is not indicative of how
well the method predicts the full GHG balance, rather it relates to the ability to
approximate that specific driver in emissions models.

Gross primary productivity: The amount of light a parcel of land receives and the
quantity of leaves it contains could be well approximated by earth observations, and
ground-based measurements are not required to target on this proxy variable (Error!
Reference source not found.). Using hyper-spectral sensors to detect Solar-Induced
Fluorescence (SIF), for example, could possibly improve estimates of GPP compared to
multispectral sensorsError! Reference source not found.. However, this increased
spectral resolution often comes at the expense of temporal and particularly spatial
resolution, which may diminish the ability to distinguish emissions between landowners
in a tax context. Although not explicitly targeted in the literature search, temperature
was often included in studies estimating GPP and NEE of peatland with authors often
using land surface temperature (LST) derived from earth observations or
interpolated/reanalysed meteorological data in models. Both can produce good
estimates of GPP, Error! Reference source not found.. Again, temperature can be
measured sufficiently without relying on ground-based measurements.

Water-table depth: The only reliable country-wide approach for accounting for WTD
was using ground-based dipwells, Error! Reference source not found.. Therefore,
achieving the spatial resolution required to handle ownership parcels would require the
installation of several dipwells per site on a peat ownership basis. WTD, when
measured with dipwells, can approximate NEE and CH, emissions well. Some authors
find that WTD alone can approximate peat emissions well, but the current review would
recommend the inclusion of VIs and temperature to ensure that GHG approximations
are reliable across the range of vegetation and conditions found in Scottish peat. This
would also be sensitive to changes in climate. A major conclusion of this review is that
the lack of remote methods for measuring WTD is limiting the approximation of
peatland GHG emissions at the national scale.

Several authors tried to include the effect of WTD on GPP, NEE and less often CH,
emissions by approximating WTD with water-based indices derived from surface
reflectance (LSWI/MWI in Error! Reference source not found.). This approach infers
WTD based on the drought-stress of the vegetation as detected by surface reflectance
and from hyper-spectral sensors on aircraft. In Canadian peat bogs, this approach has
been successful in predicting NEE at short time scales and for low and narrow ranges of
WTD, but was shown to be a bad indicator of yearly NEE in Scandinavian peatbogs since
its inability to detect seasonal changes in WTD. The review suggests that remote
sensing methods using reflectance data alone are currently not accurate enough to

63



predict WTD for the purposes of estimating CH, and R, emissions from peatland in
Scotland.

INSAR has recently been used to infer WTD in peatland to varying degrees of success
depending on site properties and rates of drying and wetting. This research is in its early
stage and would requires more validation and understanding of variability. Given the
lack of remote measurements of WTD, we recommend further research into INSAR
derived WTD, particularly research that links these measurements to NEE and CH,flux.

Process-based hydrological modelling as means of estimating WTD was not
investigated in this report but it may be possible to interpolate coarser dipwell results to
finer scales using physical modelling approaches. In general, standard models of
groundwater hydrology should be adapted to account for the expansion of the media
when applied to peat.

Theoretically, INSAR can detect bog breathing and ebullition events. However, we did
not find studies which related InSAR signals to direct measurements of peatland GHG
emissions®.

N.O emissions were not explicitly considered in this review but nitrogen concentrations,
besides the drivers already mentioned, are known to be the major controller of these
emissions. Soil tests, fertilisation and stocking density data are reliable approaches for
determining nitrogen contents of peat. Remote methodologies for determining nitrogen
concentrations in peat are left for another study (Table 1).

9.3 Comparison Matrix of Measurement Strategies

To assess cost and accuracy it was necessary to define measurement scenarios which
combine multiple measurements, since effective modelling of some GHG components
(e.g. soil respiration) requires information on multiple drivers. It was not possible/useful
to score individual proxy measurements against the criteria since they could not predict
peat emissions across the wide range of Scottish peat conditions as stand-alone
measurements. The final table provides a comparison of four measurement scenarios,
in relation to their cost and accuracy of measuring the full peat GHG balance, Error!
Reference source not found..

Each scenario outlines a suite of methods that together may be used to measure key
drivers of peat GHG emissions: light and leaf-area characteristics, surface temperature,
and water-table depth (WTD), with optional soil sampling for nutrient and pH data. Each
measurement scenario meets the criteria of providing sufficient spatial and temporal
resolution. Scenarios progress from low-cost, low-accuracy remote sensing (Scenario

®which is why InSAR has a score of Low in the ebullition column of Table 1.
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1) to increasingly detailed hybrid ground/remote approaches incorporating on-site
dipwells, soil analysis, and hyperspectral data (Scenarios 2-4). Costs are presented for
two monitoring extents (ScotGov Target: 250,000 ha and the entire 1990-degraded peat
area in UK National Inventory: 1,952,000 ha) and include annual operational and initial
capital expenditures. Costingin Table 9 is indicative and reflects assumptions (detailed
in subsequent section). Reported GHG coverage (CO,, CH,, N,O) and indicative
accuracy reflect each method’s capacity to resolve drivers of emissions, as set out in
Table 1.

Errors in WTD measurements will likely propagate nonlinearly (potentially even
exponentially) into errors in estimates of NEE and CH,, as many authors use nonlinear
relationships between WTD and these fluxes to capture the underlying processes.
Therefore, the absence of accurate remote measurements of WTD remains the key
limitation, and we conclude that it is not currently feasible to provide an accurate
measurement of the full peat GHG balance using only remotely sensed data (Scenario
1). Scenarios 2- 4 provide greater accuracy but atincreased cost. The greatest
improvement in accuracy is brought by incorporating site level measurement of water
table in Scenario 2. However, this also marks the most significant contribution to cost,
due to the cost installing and maintaining dipwells on peatland sites. Moving from
Scenario 2 to 3 accounts for N,O emissions with soil testing of peat under crops (not
grass). Scenario 4 uses hyper-spectral detectors to improve estimates of
photosynthesis, and possibly with further research to overcome WTD limitations, but
comes at the expense of decreased resolution which may limit its ability to account for
peat ownership.

Cost estimates provided in this report reflect a significant assumption that 3-5 dipwells
would be required per 100ha. It should be noted however that this remains an area of
unresolved uncertainty. An alternative costing of national peatland monitoring provided
by Artz et al. (2023) calculated that 0.85 dipwells would be required per 100ha.
Extrapolation of Artz et al.’s costing suggests that dipwell installation and monitoring
costs could be 3-6 times lower than estimated in this report. Dipwell spacing in Artz et
al. (2023) is extrapolated from monitoring at Flanders Moss, which is relatively flat and
homogenous in comparison to the variety of peatland conditions and site topography
present across Scotland. In addition, Artz et al.’s costing is presented in the context of a
national monitoring framework rather than a parcel- or holding-level tax, and does not
specify sensor models or performance characteristics in a way that allows direct
comparison with the higher-specification pressure sensors and quality assurance
assumptions used in this report. In a tax context, measurement design must be
sufficiently robust to support independent verification, withstand audit and appeal, and
minimise the risk that drift, missing data or local heterogeneity leads to systematic over-
or under-assessment of liabilities; these requirements tend to increase both the density
of instrumentation needed in complex terrain (e.g. around drains, slope breaks and
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heterogeneous management units) and the minimum sensor specification and QA
procedures required to demonstrate data reliability.

At further extreme, Allot et al. (2009) calculated that 15 dipwells would be required to
provide a reliable estimate at their highly eroded 30m by 30m site (which they
specifically selected to represent the worst case scenario of maximum variation at site
level). Beyond these estimates we could find no clear signal of required dipwell spacing
in the literature, 3-5 per 100ha is presented as a best guess. This assumption is
therefore used as a precautionary, tax-relevant standard intended to be broadly
applicable across diverse Scottish peatland settings, rather than as an estimate for
national-scale monitoring alone. It reflects the need for representative mean annual
WTD estimates at holding scale, while limiting the risk that localised conditions
dominate measurements, and it provides a transparent basis for costing and sensitivity
testing in Table 9. This is broadly in line with actual dipwell spacing per 100ha (1.6, 3.2,
3.5, 5.7, 15) within the underlying studies analysed by Evans et al. (2021).
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Table 9 11: Comparison matrix of measurement strategies for estimating peatland greenhouse gas (GHG) emissions. Each scenario outlines a suite of methods used to measure light
and leaf-area characteristics, surface temperature, and water-table depth (WTD), with optional soil sampling for nutrient and pH data. Costs are presented for two monitoring extents
(ScotGov Target: 250,000 ha and all degraded peat: 1,952,000 ha) and include annual operational and initial capital expenditures. Scenarios progress from low-cost, low-accuracy

remote sensing (Scenario 1) to increasingly detailed hybrid ground/remote approaches incorporating on-site dipwells, soil analysis, and hyperspectral data (Scenarios 2-4). Reported
GHG coverage (CO,, CH,, N,0) and indicative accuracy reflect each method’s capacity to resolve drivers of emissions.

table depth

Scenario Assumed Item Annual operational cost | Initial capital cost GHG Accuracy
measurement 250,000ha 1,952,000ha | 250,000ha  1,952,000ha | COVerage
protocol
Scenario 1: Remote | Open source satellite Poor
Sensing and meteorological Initial model - - £3,000,000 £3,000,000
data obtained, development LSWI provides
. . inspected and an
;ﬁztuig:::;jm:; processed annually. Annual data Nil Nil - - inconsistent
Utilising open source acquisition cost approximation
MODIS, Landsat, Sentinel Initial model for water table
data development and Data integration £42,000 £84,000 - - over longer
calibration using and processing time periods,
Temperature: LST/ existing UK and and modelling
Meteorological data Ireland site of respiration
measurements drawn Total: Total: Total Total | CO2, CH4 and CH4
WTD: LSWI/MWI from literature. £42,000 £84,000 £3,000,000 £3,000,000 | (Missing requires
N20) information
on WTD.
Scenario 2: Remote | Opensource satellite
Sensing with on- and meteorological Initial model - - £3,000,000 £3,000,000
. data obtained, development
site water table inspected and
measurement processed annually. Dipwell - - £8,305,000 £64,845,000
construction cost
Light and Leaf area: Initial model
Satellite derived Vis - development and Annual data
Utilising open source calibration using acquisition cost
MODIS, Landsat, Sentinel | existing UK and Nil Nil - -
data Ireland site Data integration
measurements drawn | and processing £63,000 £126,000 - -
Temperature: LST/ from literature.
Meteorological data Annualised cost of
Average annualwater | 5yearly dipwell £450,000 £3,500,000 - -
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WTD: Dipwells installed determined from 3-5 servicing by
at site. Remote dipwells per 100ha. ecological surveyor. Total: Total: Total: Total: | CO2, CH4 Good and
monitoring of water table | installed at site and £513,000 £3,626,000 £11,305,000 £67,845,000 | (Missing costly
by pressure transducer. remote sensing by N20)
pressure transducer.
Scenario 3: Remote | Open source satellite
Sensingwith on- and meteorological Initial model - - £3,000,000 £3,000,000
. data obtained, development
site water table inspected and
measurement and processed annually. Dipwell - - £8,305,000 £64,845,000
soil testing to target construction cost
N,O Initial model
development and Annual data Nil Nil -
Light and Leaf area: calibration using acquisition cost -
Satellite derived Vis - existing UK and
Utilising open source Ireland site Data integration £63,000 £126,000 -
MODIS, Landsat, Sentinel measurements drawn | and processing -
data from literature.
Annualised cost of £450,000 £3,500,000 -
Temperature: LST/ Average annualwater | 5yearly dipwell -
Meteorological data table depth servicing by
determined from 3-5 ecological surveyor.
WTD: Dipwells installed | diPwells per 100ha.
at site. Remote installed at site and Annual soil testing £8,000 £56,000 -
monitoring of water table remote sensing by
by pressure transducer. | Pressure transducer. -
Annual calibration. Total: Total: Total: Total: | CO2, CHa, Good and
Annual soil testing of £521,000 £3,682,000 £11,305,000 £67,845,000 | N.O costly
Nutrients and Ph: 9,000ha cropped
Annual soil testing. peatland area. Improves
applicability
of Scenario 2
to better
reflect N2O
emissions
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Scenario 4:
Hyperspectral data
with on-site water
table and soil
testing

Light and Leaf area:
Hyperspectral data

Temperature: LST/
Meteorological data

WTD: Dipwells installed
at site. Remote
monitoring of water table
by pressure transducer.
Annual calibration.

Nutrients and Ph:
Annual Soil testing.

Hyperspectral data
obtained, inspected
and processed
annually.

Initial model
development and
calibration using
existing UK and
Ireland site
measurements drawn
from literature.

Average annual water
table depth
determined from 3-5
dipwells per 100ha.
installed at site and
remote sensing of

pressure transducers.

Annual soil testing of
9,000 ha cropped
peatland area

Initial model
development

Dipwell
construction cost

hyperspectral data
acquisition cost

Data integration
and processing

Annualised cost of
5yearly dipwell
servicing by
ecological surveyor.

Annual soil testing

£110,000

£63,000

£450,000

£8,000

Total:
£631,000

£860,000

£126,000

£3,500,000

£56,000

Total:
£4,542,000

£3,000,000

£8,305,000

Total:
£11,305,000

£3,000,000

£64,845,000

Total:
£67,845,000

CO2, CHa,
N20O

Good and
costly

Improves
accuracy at
predicting
GPP
compared to
scenario 3 but
may lose
spatial
resolution.
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9.4 Costing Assumptions

Initial model development

£3,000,000 research project

Satellite data
Satellite data acquisition cost is nilif using open source.

Annual data processing and integration of satellite, meteorological and landownership data: 1-2
FTE roles. £42,000 — £84,000. Assume an additional 50% markup on data processing and
integration, where processing and integration of water table data is further required. £63,000 -
£126,000.

To tile Scotland would take 8 Landsat tiles. Landsat scene image size is 185km = 34,225km2.

To tile Scotland would take 18 HLS tiles. Harmonised Landsat and Sentinel (HLS) images are
109.8km =12,056km?2.

To tile Scotland would take 2 MODIS tiles

Dipwell construction

Assume 3- 5 dipwells required per 100 ha. Average 4 per 100ha.

Cost of labour

Ecological surveyor visits site and develops schedule of works. Assume 1 day per 200ha=0.5
days per 100ha.

Contractor visits site with materials. Augers well [either by hand/ with mini excavator], and fits
dipwell and remote sensor.

Assume 1- 2 days required to construct 3- 5 dipwells. Average 1.5 days
Ecological contractor day rate: assume £300- £400. Average £350
Ecological surveyor day rate: assume £400 - £500. Average £450

Total cost of labour per 100ha = 0.5 X 450 + 1.5 X 350 = £750

Cost of materials

Item Cost Detail

PVC pipe £77.42 (half of 5m 4inch class E pipe)
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Gravel £11.40 25 kg sack

Bentonite £26.00 (half of 25kg sack)
Sand and cement £10
Pressure sensor (commercial design) £518.40

ALTA Wireless pressure meter
[MNS2-8-W2-PS-300-SW]. 10 year

battery life
Pressure sensor (commercial design) £462.28 Druck PDCR 1830
Pressure sensor, temperature and data £1050 TROLL 500

logger (commercial design)

Total cost of dipwell materials £643

Total cost of dipwell installation
Cost of dipwell installation per 100ha = Cost of labour + cost of materials
Cost of dipwell installation per 100ha

=£750 + (£643 *4) = £3322

Total cost of dipwell installation (1,952kha);

=1952 x % x £3322 = £64,845,440

Total cost of dipwell installation (250,000ha);

=250,000 x ﬁ X £3322 = £8,305,000

Dipwell maintenance

Annual visit by ecological surveyor to change batteries on pressure sensor, check dipwell free
and not choked and conduct response time tests.

Total peat area = 1952kha (1990)

Total Degraded Peat Area: 1461 kha (1990) [excluding near natural bog]

Ecological surveyor serviced area per day: 250 ha [walk 6-10k, service 6-10 dipwells]

Ecological surveyor daily rate: £400- £500. Average £450
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Annual cost of yearly site visit for dipwell maintenance = 1952x1000/250 x 450 = £3,513,600 per
annum.

Annual cost of yearly site visit for dipwell maintenance = 250,000/250 x 450 = £450,000 per
annum.

Soil Testing

Soil testing required for proportion of peat thatis cropped.

Peat Crop Area = 9kha

Soil samples collected by ecological surveyor.

Ecological surveyor serviced area per day: 300ha. [Walk 10- 16k.]

Ecological surveyor day rate: £400 - £500. Average £450

Labour cost of Total 9kha =9 x 1000 X 31% x 450 = £13,500

250000 o 1 o 450 = £1,729
1,952,000 300

Labour cost of part of 9kha=9 X

Cost of sample analysis assumed to be £4.66 per ha. Eory et al. (2025) report an average value
of £4.66 per ha to conduct soil testing for nitrogen

Cost of Total9kha=9 x 1000 %X 4.66 = £41,940

250,000
1,962,000

Cost of Part of 9kha= 9 x 1000 X

X 4.66 = £5,344

Total cost of 9kha £13,500 + £41,940 = £55,440

Total cost of part of 9kha £1,729 + £5,344 = £7,073

Hyperspectral data

Hyperspectral data is available at 50 euro per km2 = £44 per km2 (Leonie et al., 2025)

Annual cost of 250,000 ha = 250,000 x ﬁ x 44 = £110,000

Annual cost of 1,952kha = 1,952,000 X ﬁ X 44 = £858,880

Artz et al. (2023) costing

We are grateful to peer reviewers who provided an alternative costing. Artz et al. (2023)
estimated the cost to maintain a national network of 100 monitoring sites, calculating that a
network of 700 dipwells would be required to provide effective monitoring at those 100 sites.
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They estimated that installing this network of 700 dipwells would cost.

Equipment: £105,000
Dipwell construction materials: £20,000
Labour: 200 person days

Artz et al. (2023) do not provide a value for labour cost. Assuming £350 day rate for ecological
contractor, to enable comparison

Labour: £70,000
Total cost for 700 dipwells £195,000
Total cost per dipwell £278.57

Artz et al. (2023) extrapolate required dipwell spacing from water table monitoring at
Flanders Moss, where they calculated that a minimum of 7 dipwells would be required
provide a reliable estimate of mean annual water table. Flanders mossis 821ha.

7 =085 dipwells per 100ha

821

Total cost of dipwell installation (1,952kha)

=1952,000 x %85 x 278.57 = £4,622,033

Total cost of dipwell installation (250,000ha)

=250,000 x (i'—sg X 278.57 = £591,196

Annual maintenance cost

Artz. et al. (2023) further specify that an annual site visit would be required to download data
and perform a manual water table calibration and dipwell displacement check. No value for
cost of labour is provided. Assuming £450 day rate for ecological surveyor, to enable
comparison, this implies a further annual cost of £450 per 7 dipwells, or £64.28 per dipwell.

Annual cost of dipwell maintenance (1,952kha)

=1952,000 x %‘ x 64.28 = £1,066,533

Annual cost of dipwell maintenance (250,000ha)

= 250,000 X j—fs X 64.28 = £136,595
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Costing Comparison

250,000ha 1,952,000ha
Dipwells Installation Annual Installation Cost  Annual
required Cost maintenance maintenance
per 100 ha
This report 4 £8,305,000 £450,000 £64,845,000 £3,513,600
Authors 0.85 £591,196 £136,595 £4,622,033 £1,066,533

estimate
extrapolating
from Artz et al.
(2023) with
additional
assumption on
cost of labour

9.5 Topography

The search terms yielded 32 hits in the Web of Science Database and an additional 23
hit in the SCOPUS database. Of the 55 unique articles, 7 were deemed suitable for
further reading after reading the abstract.

Key Findings: Topography

No studies compared topographic measurements (InSAR, LiDAR,
photogrammetry etc) to peat GHG emissions quantitatively.

Often, topographic measurements were used to explain differences in
measurements qualitatively.

Topographic features could affect EC measurements by their effect on airflow.
No studies linked bog-breathing to yearly emissions estimates.

INSAR shows promise as a means for estimating water table depth, however,
more research is required to understand variability across sites.

No study in the targeted literature review linked InSAR derived surface motion to
peat GHG emissions directly.

Time-resolved LiDAR surveys show promise for estimating GPP in agriculture by
measuring changes in crop height, however, this has not been transferred to peat
ecosystems. Spectral earth observations are currently the cheaper and more
established approach to capture these phenomena.
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Several papers deemed relevant used measurements of micro-topography to explain
emissions differences between hummocks and hollows (Lees et al., 2021). With
authors find that hummocks have greater CO, emissions but less methane emissions
than hollows (Wu et al., 2011). In general, NEP is higher in hummocks but they are
known to consume atmospheric methane at low rates (Frenzel and Karofeld, 2000).
Many of these results can be derived from understanding of the control of water table
depth on CO; and methane production, however, some authors find that living
vegetation differences between the microforms are important for understanding net
CO:; flux (Krohn et al., 2017). Results such as these could be used to further refine
National Inventory type methodologies by including additional peat conditions
categories which account for micro-topographic features. However, measurements of
micro-topography are unlikely to be a stand-alone proxy of emissions.

Other papers concern how surface topography could affect EC measurements due its
effect on airflow. For example, (Herbst et al., 2011) found that friction velocity®
(turbulent shear stress) caused by airflow interacting with the micro-topography in the
EC footprint had a large effect on measured methane emissions from a restored
wetland in Denmark. Footprints with a high proportion of low-lying peat had the largest
deviation between modelled and EC measured methane emissions due to low friction
velocities causing insufficient mixing and unreliable eddy-covariance measurements
(Herbst et al., 2011). Zhang et al. (2020) compared measurements of CO, and CH,
emissions between chamber and EC methods from wetlands on the Qinghai-Tibetan
Plateau and used temperature dependent models fit to each set of measurements to
extrapolate results to historic emissions. The choice of measurement mode caused
large differences in projected emissions. The 4 chambers used were not representative
of all microtopographic features found in the seemingly-homogenous wetland while the
EC method averaged out spatial heterogeneity of the footprint making it hard to
translate the result to other locations without accounting for spatial features with
modelling (Zhang et al., 2020).

LiDAR has recently shown promise as a means of estimating GPP in arable systems by
measuring changes in crop height from point clouds produced by LiDAR time series
(Revenga et al., 2024). However, the literature search found no examples of these
techniques being transferred to peat ecosystems. Additionally, this technique requires
several LiDAR surveys per month which is not cost effective at the national scale.
Spectral earth observations are a more established methodology for estimating GPP in
peat (see later sections).

Measurements of bog-breathing by INSAR seemed the most likely mode of measuring
topography to predict annual GHG emissions due to its ability to measure bog breathing

6 \/(u’w')z + (v'w’)? in the language of equation Error! Reference source not found.
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and long- and short-terms changes in elevation thought to be indicative of subsidence
and water table depth (Alshammari et al., 2020). The literature search suggests that
there is no literature relating INSAR measured bog-breathing to direct measurements of
GHG emissions from peat.

Since the literature search on InSAR’s correlation with direct measurements of GHG
emissions was limited, additional searches were conducted to evaluate how well INSAR
can detect soil moisture. Both INSAR and SAR have shown promise for estimating peat
moisture under certain conditions, with reported R®values ranging from 0.12 to 0.72 for
SAR and from 0.05 to 0.67 for INSAR, depending on site characteristics in Irish peatbogs
(Hrysiewicz et al., 2023). The authors found that INSAR derived surface motion could not
accurately detect the low soil moisture in drought conditions and lagged-behind the
increases soil moisture and water table depth following rewetting. The lag could be
explained by phase ambiguity (See Appendix 3 Topography section) when surface
motion is large (Hrysiewicz et al., 2023). INSAR coherence, the ‘similarity’’ of two
sequential INSAR signals, has been shown to be related to soil moisture, particularly in
spring/summer months and in banket bogs (R?=0.83) (Walker et al., 2025). However,
coherence was out-of-phase with WTD resulting in lower correlation. Frozen ground
was found to affect the Radar response causing poorer correlation in winter months
(Walker et al., 2025). The authors investigated several pre-processing options to
account for seasonal changes in conditions that could affect the measurement.
Hrysiewicz et al. (2023) found a negative correlation of coherence with soil moisture
while Walker et al. (2025) found a positive correlation with the later authors offering
several mechanisms for the differences. Using INSAR and SAR to estimate peat
moisture and WTD is still in its infancy and further research is required to make it a
reliable proxy for these variables.

9.6 Water-table depth

The search terms yielded 314 hits in the Web of Science Database and an additional
220 hits in the SCOPUS database. Two further articles were identified through cross-
citation, one further was provided by a peer reviewer. Of the 537 unique articles, 53
were deemed suitable for further reading after reading the abstract.

Among these, several recent meta-analyses were identified which had made
assessment of environmental controls on GHG emissions from peatlands. Given the
large volume of primary studies, the review focussed on relating findings from meta-
analyses. Primary studies were reviewed selectively, with a focus on articles dated post
2020.

7 Cross-correlation
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Key Findings: Water table, CO, and CH,

UK and Ireland

Global

A recent UK meta- analysis of environmental controls on emissions from UK and
Ireland peatlands (16 sites) conducted by Evans et al. (2021) found that mean
annual effective water table depth (WTDe) was a reliable predictor of both NEP
(CO;, flux adjusted for grazing and other carbon offtakes) (R?=0.9) and CH,4
(R?=0.55) emissions, concluding that mean annual effective water table depth
alone was sufficient as predictor and including additional control variables did
not improve the predictive power of their model (where water table depth was
measured as mean effective water table depth, i.e. not exceeding the depth of
peat).

Similar functional relationships were reported by Tiemeyer et al. (2020) analysing
a German national dataset (118 sites), however the strength of the relationship
was not reported. Tiemeyer et al. (2020) did not investigate further
environmental controls due to data availability.

Evans et al.’s strong results contrast to those observed in an earlier analysis by
Levy et al. (2012) utilising annual flux data from peat chamber measurements at
21 UK sites, which observed water table to be one among several environmental
controls on CH, fluxes. When assessed as univariate predictors Levy et al.
(2012) found a species composition index to the strongest univariate predictor of
CH, fluxes.

Findings from global meta- analyses are overall more mixed.

Evans et al. (2021) further report findings from an extended dataset,
incorporating flux measurements from a further 49 eddy covariance studies
located globally, they found a similar linear and positive relationship for CO,,
though with a lower gradient, and poorer model fit (R* = 0.65).

Contrastingly a meta- analysis of CO, fluxes from global wetlands conducted by
Lu etal. (2017) (43 wetland sites) found no statistically significant effect of water
table depth on CO; emissions. Within their study, mean annual temperature
followed by Mean annual precipitation were found to be strongest univariate
predictors of annual carbon fluxes across all wetland types.

Considering the full GHG balance, Zou et al., (2022) conducted a global review of
wetland GHG fluxes collating findings from 1,875 sites (3,704 site years). Across
their global dataset (complete records available for 174 site years), they find that
a near surface level water table (-1 to -30cm) minimised GHG emissions, while
emissions peaked in both flooded and drained conditions, reflecting a parabolic
relationship between GHG emissions and water table level. They similarly
observed a parabolic relationship between CO, emissions and water table level,
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while CH, emissions increased linearly with water table level, and N,O emissions

decreased linearly with water table level. The general form of these relationships

held across temperature regimes, boreal, temperate, and tropical sites. Fitted

relationships were not overwhelmingly strong however. Across all sites, the
relationship between water table level and net GHG flux was (R?= 0.29, n=103

site years). Relationships for specific GHG components were sometimes

stronger than this, but these were overall poorer for temperate sites.

e (Other meta-analyses of CH, fluxes from peatlands have found water table to be

one among several controls on CH, emissions across the temperature regimes

and wetland types that are present at global scale. Atthe global scale some

studies instead found temperature or vegetation to be stronger univariate
predictors of methane fluxes than water table.

o Turetsky et al. (2014) (71 wetland sites) additionally found that functional forms
depended on type of wetland and management.

e Similarly Li et al. (2024) (38 wetland sites) found that response of methane

emissions to water table depth and temperature varied between vascular plant

wetlands and moss plant wetlands, which differed in both direction and

magnitude of response to variation in water table depth.

Findings from primary studies

Studies of GHG emissions at peatland sites post rewetting have indicated that methane
emissions may increase in the short run following rewetting (Kandel, Elsgaard and
Laerke, 2017; Schaller, Hofer and Klemm, 2022; Antonijevic et al., 2023; Kalhori et al.,
2024; Delwiche et al., 2025). In one case the increase in methane dominated, resulting

in a net increase in CO, equivalent emissions in the short term (Kandel et al., 2020).

Summary Table: Water table findings from meta- analyses

Table 10 Summary findings from meta-analyses

Source Geographic  Flux measure Water Water Table: Overall/ Best Fit Model
scope Table: CO, CH,
Evanset UKand Eddy Covariance linear exponential Mean annual effective
al. Ireland (16 (CO2) relationship relationship water table depth
(2021) sites) R2=0.9 R2=0.55 sufficient as single
Static chamber predictor both for CO,
(CH4) and CHy,, including other
variables did not
improve predictive
power.
Tiemeye Germany Static Chamber Approximat  Exponential -
retal. (118 sites) ely linear relationship
(2020) response
upto-0.4m
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Levy et
al.
(2012)

Luetal.
(2017)

Zou et

(2022)

UK (21
sites)

Global (22
inland and
21 coastal
wetland
sites)

Global
(8,704 site
years, 1,875
sites)

Peat chamber - linear
relationship
RZ=0.15to0
0.25

Eddy covariance  Not
significant

Eddy covariance,
Static chamber,
Automatic
chamber

Water table one of
several environmental
controls on CH, and had
relatively low predictive
power in comparison to
other variables when
assessed as univariate
predictor. A species
composition index found
to be strongest
univariate predictor
where data available,
peat depth otherwise.
Parsimonious
multivariate models
included soil
temperature, soil
moisture and soil
carbon.

Water table was not
found to be a significant
predictor of variation in
CO: fluxes. Mean annual
temperature (MAT)
followed by Mean annual
precipitation (MAP) were
found to be strongest
univariate predictors of
annual carbon fluxes
across all wetland types.
Their best fit model
included MAT, MAP and
an interaction between
MAT and MAP and
explained 71% variation
in GPP and 57%
variation in NEP.
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Wuetal. Global (371 Eddy covariance  -0.35 -
(2025) wetland standardise Water table depth was
observation d the most important
s) coefficient factor regulating
in SEM methane exchange from
wetlands, while mean
annual temperature was
the second most
important predictor.
Methane fluxes also
related to carbon cycle
measures, GPP, NEE and
Reco likely due to
common underlying
drivers.
Lietal. Global (38 Eddy covariance - 0.47 Water table depth,
(2024) wetland standardised followed by mean
sites) coefficientin  annualtemperature
SEM most important
regulators of net
methane in wetlands.
Knox et Global (60 Eddy covariance - Moss plant Li et al. (2024) present
al. sites) wetlands: results from various
(2019) linear modelling approaches,
relationship concluding overall that
(R?=0.24) response to
environmental controls
Vascular differs between moss
plant plant wetlands and
wetlands: vascular plant wetlands,
(R?>=0.18- which differed in both
0.35) direction and magnitude
of response to variation
in water table depth.
Turetsky  Global (71 Static chamber - linear Water table significant
etal. wetland relationship predictor, however mean
(2014) sites) R2=0.31 annual temperature
(excluding strongest single
sites which predictor.
are
permanently
inundated)

Meta analysis findings, Water table and CO.

Drawing on site level measurement of annual GHG fluxes, several recent meta-
analyses have sought to assess the extent to which differences in water-table depth
(among other environmental control variables) can explain variation in annual fluxes
between sites.

Meta- analyses differed in their geographic scope (UK versus Global) as well as type of
primary studies included (eddy covariance/ static chamber). Most looked at evidence
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for environmental controls on methane, two assessed the evidence for CO, in addition
to methane. None of the reviews identified looked at N,O, or the full GHG balance.
Summary findings from meta-analyses are presented in Table 10 above.

UK and Ireland

Evans et al (2021) found a strong linear relationship between water-table depth and CO,
emissions from UK and Ireland peatlands (16 sites). Analysing annual flux
measurements from sixteen eddy covariance studies at sites in UK and Ireland they
found that net ecosystem productivity (NEP) increased linearly with water table depth.
They report R? = 0.9, indicating that variation in WTDe alone between sites explained
90% of variation in NEP. Extending this dataset with flux measurements from a further
49 eddy covariance studies located globally, they found a similar linear and positive
relationship, though with a lower gradient, and poorer model fit (R? = 0.65).

Evans et al. (2021) analysis of variation in annual CO, flux was limited to eddy
covariance studies. Other primary studies utilising peat chamber measurements to
measure CO; emissions were not included in their analysis. We are not aware of any
meta-analysis which has been conducted of findings from UK peat chamber
measurements to date.

Tiemeyer et al. (2020) describe the methodology for determining GHG emissions factors
from drained organic soils within Germany. In line with findings within Evans et al.
(2021) the primary environmental control underpinning German emission factors is a
national map of water table depth. Emissions factors draw on a national dataset of
GHG balances (CO., CH, and N,O) from 118 sites across land-use categories and types
of organic soils. Fluxes were measured using manual chambers following harmonised
protocols. GHG response was statistically analysed in relation to land use category,
type of organic soil and mapped water table depth. Other drivers such as soil
properties, dynamic water table, land use intensity and fertilisation were considered but
not utilised due to data availability at national level.

Across their dataset, CO, emissions increase steeply with increasing water-table depth
before levelling out at a water-table depth of around -0.4m where additional drainage
would not on average increase CO, emissions. Among shallow drained sites, CO,
emissions increased almost linearly with deeper water table. Modelling this
relationship they fit a Gompertz function. They found no clear difference in water table
response across land classes.

Global
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Lu etal., (2017) conducted a global meta- analysis of CO; flux measurements from eddy
covariance studies finding no statistically significant effect of water table depth on
annual CO, fluxes, whether assessed as GPP, Re, or NEP. Data for their study was
compiled from a literature review in 2014 comprising 143 site years from 22 inland and
21 wetland sites. Mean annual temperature (MAT) followed by Mean annual
precipitation (MAP) were found to be strongest univariate predictors of annual carbon
fluxes across all wetland types. Their best fit model included MAT, MAP and an
interaction between MAT and MAP and explained 71% variation in GPP and 57%
variation in NEP. They further observed a positive relationship between leaf area index
and GPP (R?= 0.53) and leaf area index and Rec, (R>= 0.37) however no significant
relationship was observed for NEP.

A subsequent review by Zou et al., (2022) presents contrasting results. Zou et al.,
(2022) conducted a global review of wetland GHG fluxes, developing a global database
(3,704 site years, 1,875 sites) of net wetland GHG fluxes (Co2, Crs and Nao). Across their
global dataset, which encompassed a range of temperature regimes, they find that a
near surface level water table (-1 to -30cm) minimised GHG emissions, typically
resulting in a near- neutral GHG flux. In contrast net greenhouse gas exchange rates
peaked in flooded and drained conditions.

Sites were categorised on six levels of water table depth; below (negative number) and
above (positive) the surface: WTL <-70 cm; -70 cm to =50 cm; -50 cm to -30 cm; -30
cmto-5cm; -5 cm to 40 cm; and >40 cm. Sites were further categorised on long term
average air temperature; boreal (<4°C) temperate (4- 17°C) and tropical (> 17°C).
Complete records of Coz, Chs and Nao fluxes were available for 174 site years, enabling
assessment of the full GHG balance. The degree of data underpinning other flux
assessments is not stated, though each draws on the full database of 3,704 site years.

Assessing net GHG fluxes across all sites they observed a parabolic relationship
between water table level and net annual GHG emissions (sum of Coz, Chs and N2o).
Median net GHG emissions were lowest within the near surface water table level
category (-30 to -5¢cm) and increased relative to this within both deeper water table
categories, and shallower (flooded) categories. A similar parabolic relationship was
observed for NEE which was also minimised within the near surface category.
Meanwhile Cis and Nyo both displayed linear relationships. Net annual Cnsemissions
were found to increase across all water table categories, while N2 emissions were
found to decrease across all water table categories. The parabolic relationship between
water table level and net annual GHG emissions was maintained when sites were split
by temperature regime, though the minimum point was at a higher water table level
among tropical sites (-5 to 40cm), than for boreal or temperate sites (-30 to -5¢cm).
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Meta analysis findings, Water table and methane

Meta-analysis findings for the relationship between water-table depth and methane
emissions are overall more mixed.

UK and Ireland

Analysing annual flux measurements from 41 static chamber studies in UK and Ireland,
Evans et al. (2021) found an exponential relationship between water-table depth and
net methane flux (R*=0.55). Adding additional variables did not improve the model fit.
They conclude that water-table depth was sufficient as a single predictor of CH,4
emissions.

Within their analysis of 118 sites on drained organic soils in Germany, Tiemeyer et al.
(2020) similarly find an exponential response of CH, to water-table depth, model fit
statistics were not however reported. Among deep drained soils annual CH, fluxes were
approximately zero, and increased as water table approached the soil surface.
Modelling this relationship they fitted an exponential response of CH,emissions to
water-table depth. CH4 response to water table was observed to vary across land use
classes; forest land, cropland and grassland, and unutilised wet organic soils.

In contrast to Evans et al. and Tiemeyer et al., an earlier study by Levy et al. (2012) found
water-table depth to be but one of several environmental controls on CH,4, and that
water-table depth had relatively low predictive power in comparison to other variables
when assessed as a single predictor. Levy et al. (2012) reported that when considered
as univariate regressors several variables showed reasonably close relationships with
CH, flux, particularly soil carbon, peat depth, soil moisture and plant species
composition. In relation to other potential control variables however, water-table depth
was found to explain a relatively low proportion of variation in methane flux (15- 25%)
when assessed in this way. They found that water table explained a greater proportion
of variation in methane flux when assessed at plot level (R? = 0.25, n= 130 plots) as
compared to when averaged at the level of each study (R?=0.15, n= 10 studies).
Restricting their analysis to studies where species composition data were available,
species composition was the strongest univariate predictor. Otherwise, considering the
full data set, peat depth was found to be the best single predictor.

When assessed within multivariate linear specifications, Levy et al (2012) reported that
parsimonious models included soil temperature, soil moisture and soil carbon,
however the best combination of these depended on the averaging level (whether
averaged across plot, sub- site or study). Meanwhile a model including an exponential
response to temperature, combined with a power function for soil moisture and a linear
function for soil carbon provided similar explanatory power to those from best sub- sets
linear regression.
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Global

Wu et al. (2025) conducted a meta- analysis of annual CH, fluxes reported in peer
reviewed literature. Utilising a structural equation modelling framework they assess
joint controls on net CO; and net CH, exchange from peatlands. They report that water
table depth was the most important factor regulating CH, exchange from wetlands,
while mean annual temperature was the second most important predictor. Among the
factors tested water table depth (standardised coefficient 0.47), mean annual
temperature (0.42), mean annual precipitation (-0.18) and ecosystem respiration (-0.10)
all exerted direct effects on CH, exchange. Methane exchange was strongly related to
carbon cycle measures GP, ER and NEE- CO2, which they surmise is due to common
underlying drivers, particularly microbial activity, and may also be due to transfer of CH,
through plant tissue and aerenchyma, as well as plant feeding of microbes in the
rhizosphere.

Li et al. (2024) carried out a meta-analysis of environmental controls on methane
emissions in natural wetlands finding that response to environmental controls differed
between vegetation types. Drawing on the flux net database, as similarly used by Knox
etal. (2019), they evaluate data from 38 sites covering 160 site years. They
characterised sites as either vascular plant wetlands or moss plant wetlands based on
primary vegetation type, finding that CH, response to water-table depth differed
between the two types of wetlands. When the water table was below the surface,
vascular plant wetlands had high CH, emissions while moss plant wetlands had CH,
emissions close to zero. The direction of response further differed with emissions
increasing as water table lowered among vascular plant wetlands, and conversely
increasing among moss plant wetlands. As a univariate predictor water table depth
explained 24% of variation in emissions from moss plant wetlands and 18- 35%
variation in emissions from vascular plant wetlands.

Variance decomposition analysis further indicated diverging environmental response
between moss plant wetlands and vascular plant wetlands. Among moss plant
wetlands, their model was able to explain 88% of variation in CH, emissions;
temperature (28.4%) and hydrological conditions (24.9%) best explained CH,
emissions, followed by soil cation exchange capacity (14.6%). Among vascular plant
wetlands, their model was able to explain 56% of variation in methane emissions; solar
radiation best explained CH, emissions (41.3%), followed by temperature (19.3%) and
latent heat (15.8%).
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Li et al. (2024) further explore direct and indirect effects of environmental controls on
CH, though structural equation modelling across all wetland types. Within their
structural equation model soil physicochemical properties, water table and
temperature each had direct effects. Water-table depth further indirectly affected CH,
emissions by influencing wetland temperature and soil pH.

Analysing CH, flux measurements from 60 global sites within the fluxnet network of
eddy covariance towers, Knox et al. (2019) assess potential environmental control on
annual methane flux across sites — controls included biome or ecosystem type, mean
seasonal water table depth, mean annual soil temperature, and mean annual air
temperature. At global scale, they report that temperature provided the best predictor of
CH,4 emissions: mean annual soil temperature or mean annual air temperature each
explained approximately 65% variation in (lLog transformed) annual methane flux.
Assessed as a univariate predictor, they find a positive linear relationship between
water table depth and CH, flux, however only among sites which are not permanently
inundated. When assessed across all sites, no significant relationship was found
between average water table depth and methane flux, whereas excluding permanently
inundated sites they find a positive linear relationship.

An earlier analysis by Turetsky et al. (2014) analysed CH, measurements from 71 global
sites identified by literature review in 2009. In contrast to Knox et al. (2019) most flux
measurements were taken by static chamber, only four sites were taken by eddy
covariance. Turetsky et al. (2014) explored various model specifications and overall
their analysis identified “general controls on wetland methane emissions from soil
temperature, water table, and vegetation, but also show that these relationships are
modified depending on wetland type (bog, fen, or swamp), region (subarctic to
temperate), and disturbance.” Water table was found to be a significant predictor within
several model specifications, however the strength of effect varied depending on
wetland type and prior management. An interaction of mean water table depth and
wetland type was found to be a significant predictor within their best fit model of annual
CH, flux, which included water table X wetland type, mean annual temperature X
wetland type, and mean annual precipitation, and explained 49% of variation in log
transformed mean flux.

Suggesting that functional relationships vary across wetland types, when assessed
across wetland types, Turetsky et al (2014) found that mean water-table position was
the only significant predictor of CH, flux averaged by site (R>=0.33, F=28.62, P <
0.0001; log10 CH,flux = 2.1 + 0.03x), while within wetland types, mean water-table
position was a significant predictor of CH, flux for bogs and poor fens but not rich fens
or swamps.
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Using a mixed effects model they further explored whether drainage disturbance alters
functional relationship between CH, flux and water table. The best-fit model of log
transformed instantaneous CH, flux included several treatment (drainage vs. pristine)
effects, suggesting that the same relationships between CH, flux, water-table position,
and soil temperature were not adequate for explaining variation in flux across pristine
and disturbed sites. Excluding the random variable, this final model explained 65% of
variation in log transformed instantaneous CH, flux. Using a similar mixed effect
modelling approach, they find no evidence that functional relationships differed
between pristine versus flooded sites however, only water table position and soil
temperature were retained in the final model, which (excluding the random variable)
explained 40% of log transformed instantaneous CH, flux across the pristine and
flooded sites.

Findings from primary studies
Primary studies were reviewed selectively, with a focus on articles dated post 2020.
Short term versus long term dynamics post- rewetting

Studies of GHG emissions at peatland sites following rewetting have indicated that
methane emissions may increase in the short run. Among these, longer term studies of
emissions post rewetting have observed that CH, emissions can remain elevated for
some time following rewetting. In one case the increase in CH, emissions dominated
the GHG balance resulting in an increase in CO; equivalent emissions.

Measuring the change in GHG fluxes at a rewetted agricultural fen during two initial
years of paludiculture, Kandel et al. (2020) observed elevated emissions and a net
increase in CO2 equivalent emissions. CH4, CO, and N,Owere measured using static
chambers, enabling assessment of the full GHG balance. Average annual CH,
emissions from both flooded and semi- flooded treatment plots were significantly
higher than control plots. The increase in methane emissions dominated the GHG
balance, resulting in a net increase in CO,eqv emissions in the two years post rewetting.

Similarly, (Antonijevic et al., 2023) reported a long period of elevated methane
emissions following rewetting at a two fen sites near Zarnekow in the Peene valley,
Germany. Methane emission remained high for 14 years following rewetting, only
subsiding following the emergence of helophytes. They hypothesise this occurred due
to large injection of leaf litter, which more gradual rewetting may have avoided.

Also studying the Zarnekow peatland site, Kalhori et al. (2024) also reported changes in
CO, alongside CH, emissions over sixteen years post rewetting. During this time the
site transitioned from being a CO, source to a CO, sink, while methane emissions have
declined (though to a lesser extent). Evaluating the time trend of measured emissions
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they observed that the site level emissions only approached IPCC default emissions
factors after 13- 16 years. They further evaluate environmental controls on interannual
variation in emissions. At their site interannual variation in CO, was primarily driven by
vegetation development (R?=0.62) and soil temperature (R>=0.46). Water-table depth
did not significantly control interannual variation in methane. They surmise this was
due to high water table at their site which generally remained above soil surface. One
severe drought year in 2018 provided an exception. Following this both annual
cumulative and daily median CH4 emissions dropped sharply in 2019.

Schaller et al. (2022) measured GHG exchange at a peatland in Uchte, NW Germany 18
years after rewetting, finding the peatland was still a significant GHG source 18 years
post rewetting. While the site remains a net source, emissions at the study site were
lower than IPCC emissions factor for a peatland recently drained for peat extraction.
The study site was an oligotrophic raised bog, drained for peat extraction in the 1950s
and rewetted in 1999. GHG fluxes (CO,, CH4 and N,O) were measured by eddy
covariance tower over 18 months in 2016 and 2017. Applying 100 year GWP conversion
factors they estimate the balance of CO,, CH, and N,O as +500 = 120 g CO,-equiv m™
a’'in 2017. Among this CH, dominated, contributing 78% to the flux. Furtherincluding
measurement of O3 (net cooling effect), resulted in a slightly smaller estimated flux of
+430 £ 120 g CO,-equivm=2a'. Within this 18 month measurement period observed no
significant response of CH, to variation in water-table depth (further investigation of
environmental controls on emissions to follow in subsequent work).

Delwiche et al. (2025) analysed fourteen years of (near continuous) eddy covariance
data from a flux tower located in the Mayberry wetland California. Following rewetting
in 2011, annual methane emissions spiked in 2012, reaching 63.3 g C m2yr'. Since
2012 methane emissions declined, reaching 10.6 g C m2yr" in 2023. Re., showed a
similar trend. Water-table depth was relatively constant for the first five years but then
experienced frequent pronounced drops due to abstraction. Vegetation ingrowth
rapidly occurred, with open water dropping from 70% to 40% between 2012 and 2014.
Developing a random forest model they explore drivers of the observed decline in
methane flux. The most important predictors were vegetation coverage, followed
closely by sediment temperature, while latent temperature, water table depth and Reco
had lesser importance.

Bockermann et al. (2024) found contrasting results. Evaluating the effect of rewetting
and warming on greenhouse gas emissions from intensive and extensive grasslands in
Germany, they found that rewetting and use as Carex paludiculture resulted in net- sink
within the first year. Dynamic and static chambers were used to measure CO,, CH, and
N.O enabling assessment across the full greenhouse gas balance. Rewetted plots were
observed to have lower NEE, greater CH,4, and lower N,O (though N,O higher than
expected). When considering the full GHG balance rewetted plots were found to have
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substantially lower emissions than drained. Emissions further depended on crop
treatment with rewetted plots on extensive grass becoming a net sink. Plots under
warmed treatment (closed chambers) were observed to have greater emissions
reduction potential.

Hei et al. (2025) compare NECB between a recently rewetted minerogenic peatland and
two undisturbed fen mires in Northern Sweden over the first three years post rewetting,
integrating eddy covariance measurement of CO, and CH, exchange along with
estimates of dissolved C to export to estimate NECB. The rewetted peatland was found
to be a net source with a mean annual NECB of +77 (£34) g C m™2year™ over the initial 3
years following rewetting. In contrast, nearby undisturbed mires were nearly C neutral
or a net sink. Net CO, emissions declined by about 50% over the three years, while
annual CH, emissions steadily increased year on year but remained at about half that of
the undisturbed mire in the third year. CO, and CH, response functions further differed.
Half hourly Reco sShowed a stronger response to temperature, while (daily) CH, showed a
weaker response to temperature as compared to natural mire sites. The observed
reduction in net CO; emissions during first three years was largely due to an increase in
GPP rather than a reduction in Reco. The seasonal and interannual pattern of GPP
increase further corresponded with NVDI suggesting that the change resulted from
response of vegetation to rewetting. Changes in biomass were not recorded, however
they observed an increase in cottongrass abundance. Contrastingly, annual Reco
remained similar over the three years, suggesting that an increase in autotrophic
respiration due to increasing plant growth, counterbalanced the (likely) reduction in soil
heterotrophic respiration due to wetter soils.

Ratcliffe et al. (2020) measured CO, emissions at a drained New Zealand peatland
finding that emissions had decreased relative to measurement sixteen years prior and
that the site had transitioned to being a C-sink. During the 19™ C, Moanatuatua was
around 7,500 ha in size. Drainage for pasture began in 1930s and by 1979 the bog
reached its current size of around 140 ha, less than 2% of its original extent. Water table
measurements in 1976 and 1977 showed water table to be close to the surface, varying
0.8cm to 3.8cm below the surface. Repeat measurements in 1995 indicated a sharp
decline in water table, reaching -60cm in summer 1994 and -65cm in 1995. Within their
four measurement years summer water table depth ranged 20cm to 1m (approx), with
20cm reflecting an anomalous wetter summer with high precipitation, within the other
three years summer water table depth ranged 75cm to 1Tm. Measurement of CO, by
eddy covariance was conducted over two periods, first in 1999 and 2000, then in 2016
and 2017. Measured NEP was much greater in the recent monitoring period. During
1999 and 2000 the bog was a C source, yet by the later period of measurement in 2016
and 2017 the bog had become a C sink. The reduction in emissions was primarily due
to greater C uptake by GPP and to a lesser degree resulted from lower C emissions from
respiration.
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Contrasting findings on environmental controls

Heiskanen et al., (2021) found that drier (deeper water table) Finnish sub-arctic fens
were larger CO, sinks than wetter ones, contradicting the results of Evans et al. (2021).
Further contradicting UK results, Heiskanen et al. (2021) found using daily flux tower
measurements that Green Chromatic Coordinate (GCC, an optical measure greenness
investigated in later sections) was a more important predictor of both Net Ecosystem
Exchange (NEE) and Gross Primary Production (GPP) than water table, with fixed effect
models explaining 34 and 64% of the variations respectively. Differences between the
peat bogs of Evans et al. (2021) and fens of Heiskanen et al. (2021) are explained by the
nutrient status and plant community. The nutrient-poor acidic peat bogs likely limit
rates of photosynthesis under dry conditions, and the specialist species are not
adapted for water-limited conditions, decreasing rates of photo synthesis. Additionally,
the drier conditions exposes the organic-mater to microbial consumption, increasing
carbon loss. On the other hand, fens are relatively nutrient rich and pH neutral to alkali,
containing vascular plants and photosynthesis dominating the carbon balance
(Nielsen, Elsgaard and Laerke, 2024). Lowering the water-table depth can increase rates
of photosynthesis (possibly by improved oxygen transport around roots) but not cause
water limiting conditions due to the deeper roots of the vascular plants. These
contradictory results suggest that water table depth may not be the sole-driver of CO,
flux in all peat conditions and that nutrient status and ground cover of certain peat
classifications (e.g. extensive/intensive grass) may need to be considered along-side
water table depth to accurately determine GHG emissions.

Heiskanen et al. (2021) found that soil temperature was the best indicator of daily
methane flux from Finish fens, followed by water table depth and leaf area index metrics
having similar weightings in their linear model. However, environmental controls on
daily emissions at a single site may be expected to differ from environmental controls
on annual emissions between sites, and the UK and Ireland climate is overall more
temperate. Additionally, because the model of Heiskanen et al. (2021) does not include
an exponential relationship between water table depth and methane flux, it may lose
some explanatory power. Therefore, these results do not necessarily contradict the
dominance of water table depth on annual methane flux found by Evans et al. (2021).

Cultivated peat

Two recent studies among cultivated peatlands report similar findings to Evans et al.
(2021), while another found no effect of water table depth on estimated carbon budget.
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Heikkinen et al. (2024) measure CH, and CO; fluxes in a cultivated peatland in Finland
over three growing seasons, finding that CO, emissions decreased linearly as the water
table increased, while CH, emissions increased, though remained comparably
insignificant relative to CO.. Their study design featured two drained and two undrained
plots equipped with control wells, fluxes were measured using static chambers. They
found an approximately linear relationship for CO, emissions and water table. CO,
increased as water table became deeper, though with indication of a levelling off which
they hypothesise was due to soil temperature gradient in relation to depth. Observed
monthly CH, fluxes ranged from negative to positive but insignificant, being two orders
of magnitude below those for CO,. From classification tree modelling they suggest that
“risk for CH, emissions increases when water level is less than 30 cm from the soil
surface and [soil water content] exceeds the threshold value of 0.6 m® m=.” Though
noting that estimates are site-specific and depend on the peat type, degree of peat
decomposition, and soil compaction.

Boonman et al. (2024) evaluated the effect of subsoil irrigation and drainage on CO,
emissions from peatlands used for dairy farming in the Netherlands, finding that sites
with higher water table had reduced annual average CO; eq. emissions. Emissions
were measured over three years by both peat chamber and eddy covariance, enabling a
comparison of measurement techniques. Sites with subsoil irrigation and drainage
were generally observed as having lower cumulative CO., though with one anomalous
site year where the CO; flux from the (wetter) sub soil irrigation site very slightly
exceeded those from the control. A similar pattern was observed when additionally
accounting for C import (manure) and C export (harvesting) to measure Net Ecosystem
Carbon Balance (NECB). They further observed a relationship across subplots between
mean summer water table depth, NEE and NECB. NECB as measured by Eddy
Covariance and Automatic Chambers showed overlapping confidence intervals when
accounting for C import (manure) and C export (harvesting)).

Nijman et al. (2024) investigated the effects of drainage on carbon budgets on thirteen
degraded peatlands used for grazing in the Netherlands finding no effect of water table
depth on estimated carbon budget. Sites were selected across different water table
depth (WTD), drainage-irrigation management, and soil moisture. NEE was measured
over two years in 2021 and 2022 using automated chambers 1 to 2 times per month, for
2 to 3 days each measurement campaign. Remaining days were gap-filled using a
random forest model. Contrary to expectation they found no relationship between
variation in WTD and annual C budget. Variation in C budgets was also independent
from drainage-irrigation management. Shallow drained and deep drained had similar C
budgets and sites with irrigation did not have statistically lower C budgets than control
sites.
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9.7 Spectral earth observations

The search terms yielded 129 hits in the Web of Science Database and an additional
102 hits in the SCOPUS database. Two further articles were identified through cross-
citation. Of the 231 unique articles, 36 were deemed suitable for further reading after

reading the abstract after prioritising articles published after 2020.

Key Findings: Spectral earth observations, CO, and CH,

Large number of studies using earth observations to estimating GPP, less
estimating NEE and even less estimating methane emissions from peat.

Due to their nature of measuring reflected solar radiance or light emitted by
plants (florescence) earth observations are good at accurately estimating GPP (i.e.
rates of photosynthesis.) in peat across several climates.

Generally, additional variables such as temperature and less-often water
conditions are required for accurate estimates of GPP. However, there are cases
when temperature and water conditions do not vary, either because of limited
spatial variability or short measurement duration, and spectral earth
observations alone are a good predictor of GPP.

Like with GPP, temperature is an important additional variable when making
predictions of NEE (Microbial and plant respiration minus GPP). Land Surface
Temperature (LST) can be determined from earth observations at approximately
+ 2 Kin (general) making it easy to include as an additional variable in models.
However, temporal frequency of measurement is low and temperature is a
shapshot when satellite passes over the area and may not be representative.
Predictions of NEE with earth observations are less accurate than GPP since
water-table depth is a major controller of bacterial respiration in peat and is
difficult to accurately measure from earth observations.

To overcome this issue, attempts have been made to use reflected earth
observations to detect drought stress in the vegetation as a proxy for WTD to
varying degrees of success. Short time-scale studies looking at sub-daily
changes in NEE have good agreement with EC measurements whereas longer-
scale studies find this approach cannot capture seasonal changes in water table
depth resulting in usually poor approximations of NEE.

Hyper-spectral observations of light emitted from plants during photosynthesis
(SIF) provides a more direct measure of photosynthetic activity that can partially
account for temperature and moisture stress effects on GPP, potentially
reducing the need for ancillary data. However, it remains limited by retrieval
noise in peatland environments and does not capture respiration components
required for NEE estimation.

Methane emissions are less often approximated with earth observations. Like
NEE, these fluxes depend heavily on water table depth which are hard to
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approximate remotely. Best attempts to measure methane emissions using
earth observations use meteorological data as additional variables to
approximate soil/peat moisture conditions, often finding that the meteorological
rather than spectral observations are the main driver of methane emissions.

e Models of methane tried to capture ebullition events indicating that more
auxiliary (microtopography/InSAR) data may be needed to improve estimates.

Gross Primary Production (GPP)

Earth Observations are inherently suited for predicting GPP (rates of photosynthesis),
often achieving high accuracy, but generally require additional variables like
temperature and water conditions. Studies using various Earth Observations platforms
and indices demonstrate good performance in predicting GPP. MODIS GPP was the
strongest predictor of EC-derived GPP in northern peatlands, explaining 68% to 89% of
the variation (Kross et al., 2013). Higher resolution data from Landsat (R*> 0.53-0.69)
outperformed lower-resolution MODIS (R* 0.40-0.63) in predicting GPP in wetlands
(Cao etal., 2025). Finer temporal and spatial resolution approaches, like camera-
derived GRVI (R2 = 0.96) or UAV/Phenocam Vls (R?s > 0.70), showed strong correlations
with GPP, often outperforming coarser satellite products in capturing seasonal
dynamics (Gatis et al., 2017; Simpson et al., 2025).

Generally, additional variables are required to make good predictions of GPP, as
spectral observations alone often struggle to capture non-light limitations. A model
using Photosynthetically Active Radiation (PAR) (measured on the ground), temperature,
and water table depth (WTD) achieved an R? of 0.85 (Albert-Saiz et al., 2025).
Cumulative air temperatures were used alongside solar radiation to mollify GPP,
achieving an R® of 0.94 across several sites (He et al., 2025). One study found that a
combined metric of a red-edge chlorophyllindex and 90-day-average rainfall (as a WTD
proxy) was the best linear predictor of GPP, with an R of 0.93 (Spinosa, Fuentes-
Monjaraz and El Serafy, 2023). A Random Forest model for Gross Ecosystem
Productivity (GEP/GPP) included spectral bands, Vls, LST, air temperature, shortwave
radiation, and soil moisture achieved an R? of 0.76 across multiple drained peatland
sites (Khan et al., 2025). However, in cases of limited temporal or spatial variability,
such as during the peak growing season in a Scottish peatland, meteorological
conditions (temperature and WTD) rather than vegetation greenness have been found to
control GPP (DuBois et al., 2018). WTD and temperature were identified as the key
controls on Light Use Efficiency (LUE) in northern peatlands (Wu et al., 2020).

Hyperspectral observations of Solar-induced Chlorophyll Fluorescence (SIF), for
example, can provide a more direct measure of photosynthetic activity. SIF is a glow of
light produced as an inefficiency of photosynthesis, and thus reduces when factors like
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water or nutrients limit photosynthesis, potentially reducing the need for ancillary data
(Balogun et al., 2023). Hyperspectral imagery improved GPP prediction performance
(adjusted R*=0.71) and reduced bias compared to broadband MODIS GPP (adjusted R?
= 0.68), with the improvement potentially due to capturing plant physiological effects
without relying on external meteorological inputs (Dubois et al., 2018). Ground-
measured SIF could predict GPP with high accuracy (R = 0.98) over 16-day aggregates
(Buareal et al., 2024). SIF was found to be a better indicator of NEE than EVI in Canadian
peat bogs, although the difference in RMSE was modest (0.51 vs 0.53 pmol CO, m=2s™)
(Balogun et al., 2023). SIF remains limited by signal-to-noise ratios due low photon
fluxes and cannot fully capture soil respiration components required for NEE estimation
(Balogun et al., 2023). The marginal improvement in GPP estimations with hyper-
spectral sensors may not always be worth the reduced spatial resolution to capture
more flux in certain peat use-cases.

Net Ecosystem Exchange (NEE) and Water Table Depth (WTD)

Predictions of NEE with spectral EO are less accurate than GPP primarily because WTD
is a major controller of bacterial respiration and is difficult to accurately measure
remotely. Neither MODIS NDVI nor MODIS SR performed well at predicting NEP (-NEE),
explaining only 25% to 53% and 29% to 39% of the variation, respectively (Kross et al.,
2013). A machine learning model predicting GEP/TER/NEE achieved an overall R? of
0.79, but noted high RMSE compared to other studies (Khan et al., 2025). However, the
study only used one site for model validation and did not account for autocorrelation
indicating the possibility of over-fitting so the model cannot be generalised across sites.
Like with GPP, Land Surface Temperature (LST) can be determined from EO in NEE
models and is an important additional variable when making predictions (Khan et al.,
2025).

Attempts have been made to use reflected EO VIs (e.g., LSWI, MWI, NDWI) as a proxy for
WTD or peat moisture in models of NEE by measuring vegetation drought stress (Xiao et
al., 2004; Junttila et al., 2021). Short time-scale studies looking at sub-daily changes in
NEE using satellite-derived WTD showed good agreement, with R® up to 0.92 over a 3-
month period (Balogun, Bello and Higuchi, 2023). The Modified Water Index (MWI) used
as the sole predictor of NEE found strong correlations (R® between 0.6 and 0.78) over
several years (Kalacska et al., 2018). However, these proxies are effective under
conditions corresponding to the onset and peak of vegetation water stress and are often
inaccurate proxies for WTD estimation outside these conditions (Kalacska et al., 2018;
Balogun, Bello and Higuchi, 2023). For example, hyperspectral NDWI1240 performed
well at predicting WTD in ranges between ~-30 -40 cm but could not predict WTD in
summer months where WTD was lower (Kalacska et al., 2018). Longer-scale studies
show that this approach cannot capture seasonal variation in WTD across all peatland
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types, resulting in poor yearly estimates of NEE (e.g., R*= 0.36 using LSWI and
temperature in Swedish and Finnish peatbogs (Junttila et al., 2021).

Methane (CH,) Emissions

Methane emissions are less often approximated with Earth Observations than CO,
fluxes and depend heavily on WTD. Best attempts use meteorological data as additional
variables to approximate soil/peat moisture conditions, finding that these auxiliary data
are the main drivers (Watts et al. 2014). Watts et al. (2014) used satellite data alongside
reanalysis data from MERRA (which includes soil moisture estimates) to model CH,
fluxes based on temperature, soil moisture, and soil carbon. MERRA data accounted for
approximately 75% of variation in CO, and CH, fluxes. SIF, argued as a proxy for
substrate, only modestly increased the R* from 0.75 to 0.76 in a linear model already
containing soil temperature and WTD (Buareal et al., 2024). Watts et. al., (2014) model
of CH, flux included features of gas transport and ebullition the peat, indicating that
more auxiliary (microtopography/InSAR) data may be needed to improve estimates.

Summary Table: Spectral Earth Observations Literature Review
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Table 12: Spectral earth observations literature review summary table

Study Site Type Carbon Proxies R? CO,data Spectral data Other variables
Metric
Khan et al. Agricultur  NEE NDVI, EVI, 0.87 (Grass) EC Landsat and Land surface temperature
(2025) al NDMlamong 0.66 (Crops) Sentinel2 (at30 m  estimated from Landsat data. No
peatlands other 0.64- 0.89 (across resolution) water table depth measurement
in East predictors sites) but uses daily soil moisture
Anglia product produced by CEH.
England
Caoetal. Ten GPP Various 0.40- 0.69 (Wetlands) EC Landsat (30m) and
(2025) ecosyste vegetation MODIS (500m)
ms within indices**
fluxnet
Heetal., Canadian  GPP Various 0.94 EC MODIS EVI and Temperature dampens VI derived
2025 northern vegetation NDVI GPP
peatbogs indices
(Buareal et Japanese GPPand CH; Ground GPP=0.93t00.93 EC Ground based GPP -only SIF. CH, Temperature
al., 2024) Peat measured SIF  CH,=0.77 and WTD. Non-linear model.
Gariosainet Pyrenean GPP Chlorophyll GPP=0.69 Static Sentinel 2 Site measurement of water table,
al. (2024) mountain  Reco index Reco=0.84 chamber DOC. Temperature site and
peatland CH4 CH,;=0.59 reanalysis.
(Balogun, Canadian  NEE SIF + various 0.92-0.98 EC MODIS and OCO2  Temperature. R2 for Diurnal NEE
Bello and peatland Vlincluding
Higuchi, EVI
2023)
(Junttila et Swedish GPP + NEE NDWIEVI GPP=0.7, NEE=0.36 EC Sentinel-2 and Temperature (MODIS-LST)
al.,2021) and Finish MODIS
peatland
(Leesetal.,, Scottish GPP NDVI Chamber=0.57-0.71, EC MODIS Temperature (MODIS-LST)
2021) peatland EC=0.76-0.86 +Chamber
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(Kalacskaet Canadian NEE +WTD MWI and WTD=0.79, EC Airborne None
al.,2018) peatland hyperspectral NEE=0.68-0.78
NDWI1240
Dubois et Various GPP Hyper 0.71 EC hyperspectral data
al. (2018) ecosyste sepctral (VSWIR, 400-
ms across signals 2,500 nm)
California,
forests,
grassland
savannas,
wetlands
and
shrubland
Gatis et al. Drained GPP GRVI 0.96 (camera) Static Digital camera,
(2017) peatland 0.79 (MODIS) chamber MODIS
in Exmoor,
England
Wattsetal.  Sixsitesin CO,andCH,; LUE model 0.75 EC MODIS Soil moisture and surface
(2014) Russian using MERRA temperature estimates obtained
and reanalysis from MERRA archive, gridded at
Eurasia data from 1/2 x 2/3° spatial resolution.
MERRA 0.69
And
MODIS GPP
Kross et al. Raised GPP MODIS GPP 0.68- 0.89 across EC MODIS
(2013) ombrotro sites
phic bog, MODIS GPP
Moderatel NEP 0.43- 0.75 across
yrich sites
treed fen,
Open
minerotro
phic
moderatel
yrich fen,
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Mesotrop
hic sub-
arctic
poor fen
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9.8 Erosion

The search terms yielded 4 hits in the Web of Science Database and an additional 4 hits
in the SCOPUS database. Of the 8 unique articles, 2 were deemed suitable for further
reading after reading the abstract. The lack of hits in the erosion literature search is due
to the necessity that papers included a direct measurement of direct GHG emissions,
Error! Reference source not found.. These search terms were designed to capture on-
site emissions while carbon lost from erosion as POC/DOC is mostly emitted off-site.
The criteria were intentionally strict to ensure that the evidence would be defensible
within a tax-dispute context and to limit paper-count within this short project. Indeed,
removing this restriction yields over 200 papers in the WOS database which were not
possible to review in this project.

Five excluded papers considered CH, isotopic ratios to investigate aerenchyma flux
pathways which discriminates *C-CH, (Marushchak et al., 2016). The two relevant
papers used 2'°Pb to date soil layers and thus determine rates of organic-matter
accumulation (Adkinson, Syed and Flanagan, 2011; Arias-Ortiz et al., 2021). Arias-Ortiz
etal., (2021) could estimate organic carbon accumulation rates and show that the
majority of organic carbon in a Californian marshland was fixed since restoration
activity. Unlike measurements of NEE with EC, carbon accumulation rate in this context
includes fluxes of CH, and NEE as well as carbon lost as DOC and POC. By comparing
carbon accumulation measurements with EC measurements Arias-Ortiz et al., (2021)
argued they could estimate carbon loss via DOC and POC. We recommend caution with
this interpretation since errors or site-dependent topography variations in EC
measurements could easily be attributed to erosion. Additionally, unquantified errors in
219pp dating likely do not co-vary with EC errors due to differing methodological
principles. Similarly, Adkinson, Syed and Flanagan (2011) used *'°Pb peat dating to
quantify long-term carbon burial and compared those results with EC-derived NEE to
test whether GPP (short-term carbon sink) translates into actual long-term peat
accumulation. They find that the two measurement approaches yield the same
qualitative results regarding two contrasting Canadian peatlands but are more cautious
and do not interpret quantitative differences between the two measurement modes as
DOC or POC loss.

Using 2'%Pb dating to determine rates of organic carbon-accumulation/loss in peat could
be a useful monitoring tool to determine success of restoration activity. Unlike EC, this
measurement is indicative of gaseous and POC/DOC loss/gain and could help capture
more of the peat GHG balance.

The IPCC wetlands supplement offers Tier 1 emissions factors for DOC based on
concentrations found in rivers and drainage waters by assuming that 90% of DOC is
oxidized to CO; but offer no emissions factors for POC (Hiraishi et al., 2014). The mass
of DOC is derived from climate-based Tier 1 emissions factors for drained peatland
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only. To include DOC emissions, the UK National Inventory used long-term data from
POC monitoring and assumed 100% of POC oxidises to determine emissions factors
per area of bare peat (Evans, C. etal., 2017). Direct measurement of erosion-derived
emissions is rarely (never?) available, emissions accounting must therefore rely on
proxy measurements (DOC/POC loads in drainage) and emission conversion
assumptions which introduce substantial uncertainty. Methodologies to measure
DOC/POC loads are outside the scope this study but will be required to capture the full
GHG balance in eroded peat. Evidence from a meta-analysis suggests that DOC loss is
correlated with WTD in peat bogs but not fens (Xu et al., 2023). It may be possible to
determine DOC losses based on WTD and use emissions factors to convert to CO, and
CH,4 emissions downstream. However, we can conclude that in any GHG-tax,
emissions estimates for eroded peat must be treated as conservative due to the lack of
direct link to measured emissions.
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