

Landscape-scale management and decision making

Prof. Heiko Balzter, University of Leicester

Department for Environment Food & Rural Affairs

t Department for Energy Security ffairs & Net Zero

Llywodraeth Cymru Welsh Government

Overshoot

- In Paris in 2015, the world agreed to limit global warming to well below +2 °C and to pursue efforts to limit it to +1.5 °C above pre-industrial levels.
- "Climate overshoot" means crossing the +1.5 °C threshold.
- In April 2022 the IPCC said that "it is almost inevitable that we will temporarily exceed this [+1.5 °C] temperature threshold but could return to below it by the end of the century."
- The first 12-month period to exceed 1.5°C as an average was February 2023 – January 2024, boosted by El Niño, according to the Copernicus Climate Change Service.

UK GHG emissions by sector

2023 UK Greenhouse Gas Emissions, Final Figures

good progress with its emission

> But there is still some way to go: All the easy wins have been realised already.

reductions.

The UK has made

Landscape management is key to reducing the stubborn emissions from Agriculture and LULUCF, in particular.

Source: DESNZ (2023)

https://assets.publishing.service.gov.uk/media/67a30e4f7da1f1ac64e5feb1/ 2023-final-greenhouse-gas-emissions-statistical-release.pdf

UK Carbon Budget 7

LAND USE for NET ZERO >>> HUB Agriculture is currently the fourth-highest emitting sector in the UK. By 2040, it will account for 27% of UK GHG emissions and will be the UK's second highest-emitting sector.

Committee on Climate Change: Land Use Policy Recommendations

Policy commitments are: increase woodland cover to 14.8% of UK land area by 2030 and 17% by 2050^{33, 34, 35, 36}; restore 300,000 ha peatland by 2050^{37, 38, 39}; scale up bioenergy crop production to 23,000 ha per year by mid-2020s; protect 30% of land for nature by 2030^{40, 41, 42, 43}. Agricultural output is calculated as a function of population projections⁴⁴.

Why multifunctional landscapes are crucial

Policy goals require that land achieves multiple objectives in the same area. Otherwise we do not have enough land.

Multifunctional landscapes for climate, nature and people (b) GNB

Multi-objective optimisation results in significantly different optimal landscape configurations.

HUB

- Guilds of species need to be considered • separately, rather than an overall biodiversity metric, to avoid biasing towards human needs.
- Participatory approaches with multiple stakeholders are better at delivering acceptable land use scenarios.

Co-benefits of multifunctional landscapes

Nature restoration

- Land use interventions towards net zero emissions should consider co-benefits and trade-offs with other policy goals.
- Only multifunctional landscape management can achieve everything we want.

Net zero land use interventions

Socio-economic and health benefits

Peatlands in Carbon Budget 7

Over half of land use emissions reductions by 2040 need to come from peatlands.

Peatland restoration and management can deliver 17% of emissions reduction by 2040.

The area of UK peatlands in natural or rewetted condition needs to double by 2040.

- Restoration of upland peatlands and forested peats (5%).
 - Restoration of upland blanket bogs to near-natural state needs to rise from 30% to 60% by 2040.
- Restoration and management of lowland peatlands (12%).
 - Restoration of lowland peatlands needs to rise from 9% to 31% by 2040.
 - Paludiculture and water level management allow continued agricultural use with reduced emissions on 4% of lowland peatlands by 2040, rising to 10% by 2050.

CO₂ emissions from three peatland sites

Semi-natural Fen: Sedge Fen CO₂ sink (-300gC m⁻²yr⁻¹) | Restoring Fen: Baker's Fen | CO₂ source (314gC m⁻²yr¹) Agricultural Fen: Rosedene | large CO₂ source (760gC m⁻²yr⁻¹)

Water table effect on peatland emissions

10 cm mean water table depth is the sweet spot with overall lowest greenhouse gas emissions (methane and carbon dioxide).

Figure: Annual mean greenhouse gas fluxes as a function of mean water table depth. Source: Evans, C.D., Peacock, M., Baird, A.J. *et al.* Overriding water table control on managed peatland greenhouse gas emissions. *Nature* **593**, 548–552 (2021). https://doi.org/10.1038/s41586-021-03523-1

Engineering and Physical Sciences Research Council

Al for Net Zero

Digital twins

- Digital twins can provide information to farmers how they can reduce greenhouse gas emissions by choosing different land management options.
- This digital twin is powered by satellite imagery, flux tower data, the JULES-CROP land surface model and machine learning.
- It predicts CO₂ fluxes at field scale on lowland peat used for agriculture for different crops.

Al for Net Zero

Figure 7: Shows the upscaled per field annual NEE kgC/m² for the year 2023 across the drained peatlands of East Anglia (top) and average seasonal NEE (gC/m²/d) around two cropland flux tower sites (Redmere 1 and 2) (below), DJF = Dec-Jan-Feb; MAM= Mar-Apr-May; JJA=Jun-Jul-Aug; SON=Sep-Oct-Nov, The extent of peatlands in the area is based on Peaty Soils Location map by BGS, NSRI and OS.

Key recommendations by the Landscape Decisions Programme

MAKING LANDSCAPE DECISIONS TO MEET NET ZERO CARBON:

PATHWAYS THAT CONSIDER ETHICS, SOCIO-ECOLOGICAL DIVERSITY, AND LANDSCAPE FUNCTIONS

January 2022

- Ensure the right ecosystem is promoted in the right place (no single land-use solution should be prioritised above others),
- Increase local and devolved decision making capabilities.

Cole, B., Saratsi, EE., Earnshaw, K., Willcock, S., Gardner, E., Bradley, A. et al. (2022). Making Landscape Decisions to Meet Net Zero Carbon: Pathways that consider ethics, socioecological diversity, and landscape functions. University of Leicester. Report.

https://doi.org/10.25392/leicester.data.19011629.v2

The LUNZ Hub team – values driven

- Transdisciplinary
- Evidence based
- Practical application
- Walking the talk
- Celebrating success

